
Student Solutions Manual For Zill's A First Course In Differential Equations With Modeling Applications, 11th
11th Edition
ISBN: 9781305965737
Author: Dennis G. Zill
Publisher: Brooks Cole
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1.1, Problem 9E
In Problems 9 and 10 determine whether the given first-order differential equation is linear in the indicated dependent variable by matching it with the first differential equation given in (7).
9.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
2. DRAW a picture, label using variables to represent each component, set up an
equation to relate the variables, then differentiate the equation to solve the
problem below.
The top of a ladder slides down a vertical wall at a rate of 0.15 m/s. At the moment when the
bottom of the ladder is 3 m from the wall, it slides away from the wall at a rate of 0.2 m/s. How
long is the ladder?
Harvard University
California Institute of Technology
Massachusetts Institute of Technology
Stanford University
Princeton University
University of Cambridge
University of Oxford
University of California, Berkeley
Imperial College London
Yale University
University of California, Los Angeles
University of Chicago
Johns Hopkins University
Cornell University
ETH Zurich
University of Michigan
University of Toronto
Columbia University
University of Pennsylvania
Carnegie Mellon University
University of Hong Kong
University College London
University of Washington
Duke University
Northwestern University
University of Tokyo
Georgia Institute of Technology
Pohang University of Science and Technology
University of California, Santa Barbara
University of British Columbia
University of North Carolina at Chapel Hill
University of California, San Diego
University of Illinois at Urbana-Champaign
National University of Singapore
McGill…
A research study in the year 2009 found that there were 2760 coyotes
in a given region. The coyote population declined at a rate of 5.8%
each year.
How many fewer coyotes were there in 2024 than in 2015?
Explain in at least one sentence how you solved the problem. Show
your work. Round your answer to the nearest whole number.
Chapter 1 Solutions
Student Solutions Manual For Zill's A First Course In Differential Equations With Modeling Applications, 11th
Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 9 and 10 determine whether the given...Ch. 1.1 - In Problems 9 and 10 determine whether the given...
Ch. 1.1 - In Problems 1114 verify that the indicated...Ch. 1.1 - In Problems 1114 verify that the indicated...Ch. 1.1 - In Problems 1114 verify that the indicated...Ch. 1.1 - In Problems 1114 verify that the indicated...Ch. 1.1 - In Problems 1518 verify that the indicated...Ch. 1.1 - In Problems 1518 verify that the indicated...Ch. 1.1 - In Problems 1518 verify that the indicated...Ch. 1.1 - In Problems 1518 verify that the indicated...Ch. 1.1 - In Problems 19 and 20 verify that the indicated...Ch. 1.1 - In Problems 19 and 20 verify that the indicated...Ch. 1.1 - In Problems 2124 verify that the indicated family...Ch. 1.1 - In Problems 2124 verify that the indicated family...Ch. 1.1 - In Problems 2124 verify that the indicated family...Ch. 1.1 - In Problems 2124 verify that the indicated family...Ch. 1.1 - In Problems 2528 use (12) to verify that the...Ch. 1.1 - In Problems 2528 use (12) to verify that the...Ch. 1.1 - In Problems 2528 use (12) to verify that the...Ch. 1.1 - In Problems 2528 use (12) to verify that the...Ch. 1.1 - Verify that the piecewise-defined function...Ch. 1.1 - In Example 7 we saw that y=1(x)=25x2 and...Ch. 1.1 - In Problems 31-34 find values of m so that the...Ch. 1.1 - In Problems 31-34 find values of m so that the...Ch. 1.1 - In Problems 31-34 find values of m so that the...Ch. 1.1 - In Problems 31-34 find values of m so that the...Ch. 1.1 - In Problems 35 and 36 find values of m so that the...Ch. 1.1 - In Problems 35 and 36 find values of m so that the...Ch. 1.1 - In Problems 3740 use the concept that y = c, x ...Ch. 1.1 - In Problems 3740 use the concept that y = c, x ...Ch. 1.1 - In Problems 3740 use the concept that y = c, x ...Ch. 1.1 - In Problems 3740 use the concept that y = c, x ...Ch. 1.1 - Prob. 41ECh. 1.1 - In Problems 41 and 42 verify that the indicated...Ch. 1.1 - Prob. 43ECh. 1.1 - Make up a differential equation that you feel...Ch. 1.1 - What function do you know from calculus is such...Ch. 1.1 - What function (or functions) do you know from...Ch. 1.1 - The function y = sin x is an explicit solution of...Ch. 1.1 - Discuss why it makes intuitive sense to presume...Ch. 1.1 - In Problems 49 and 50 the given figure represents...Ch. 1.1 - In Problems 49 and 50 the given figure represents...Ch. 1.1 - The graphs of members of the one-parameter family...Ch. 1.1 - Prob. 52ECh. 1.1 - In Example 7 the largest interval I over which the...Ch. 1.1 - In Problem 21 a one-parameter family of solutions...Ch. 1.1 - Discuss, and illustrate with examples, how to...Ch. 1.1 - The differential equation x(y)2 4y 12x3 = 0 has...Ch. 1.1 - Prob. 57ECh. 1.1 - Find a linear second-order differential equation...Ch. 1.1 - Prob. 59ECh. 1.1 - Prob. 60ECh. 1.1 - Consider the differential equation dy/dx = y(a ...Ch. 1.1 - Consider the differential equation y = y2 + 4. (a)...Ch. 1.2 - In Problems 1 and 2, y = 1/(1 + c1ex) is a...Ch. 1.2 - In Problems 1 and 2, y = 1/(1 + c1ex) is a...Ch. 1.2 - In Problems 36, y = 1/(x2 + c) is a one-parameter...Ch. 1.2 - In Problems 36, y = 1/(x2 + c) is a one-parameter...Ch. 1.2 - In Problems 36, y = 1/(x2 + c) is a one-parameter...Ch. 1.2 - In Problems 36, y = 1/(x2 + c) is a one-parameter...Ch. 1.2 - In Problems 710, x = c1 cos t + c2 sin t is a...Ch. 1.2 - Prob. 8ECh. 1.2 - In Problems 710, x = c1 cos t + c2 sin t is a...Ch. 1.2 - In Problems 710, x = c1 cos t + c2 sin t is a...Ch. 1.2 - In Problems 1114, y = c1ex + c2ex is a...Ch. 1.2 - In Problems 1114, y = c1ex + c2ex is a...Ch. 1.2 - In Problems 1114, y = c1ex + c2ex is a...Ch. 1.2 - In Problems 1114, y = c1ex + c2ex is a...Ch. 1.2 - In Problems 15 and 16 determine by inspection at...Ch. 1.2 - In Problems 15 and 16 determine by inspection at...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 2528 determine whether Theorem 1.2.1...Ch. 1.2 - In Problems 2528 determine whether Theorem 1.2.1...Ch. 1.2 - In Problems 2528 determine whether Theorem 1.2.1...Ch. 1.2 - In Problems 2528 determine whether Theorem 1.2.1...Ch. 1.2 - (a) By inspection find a one-parameter family of...Ch. 1.2 - (a) Verify that y = tan (x + c) is a one-parameter...Ch. 1.2 - (a) Verify that y = 1 /(x + c) is a one-parameter...Ch. 1.2 - (a) Show that a solution from the family in part...Ch. 1.2 - (a) Verify that 3x2 y2 = c is a one-parameter...Ch. 1.2 - (a) Use the family of solutions in part (a) of...Ch. 1.2 - In Problems 3538 the graph of a member of a family...Ch. 1.2 - In Problems 3538 the graph of a member of a family...Ch. 1.2 - In Problems 3538 the graph of a member of a family...Ch. 1.2 - In Problems 3538 the graph of a member of a family...Ch. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - Find a function whose graph at each point (x, y)...Ch. 1.2 - Prob. 46ECh. 1.2 - Consider the initial-value problem y = x 2y, y(0)...Ch. 1.2 - Show that x=0y1t3+1dt is an implicit solution of...Ch. 1.2 - Prob. 49ECh. 1.2 - Suppose that the first-order differential equation...Ch. 1.2 - The functions y(x)=116x4, x and...Ch. 1.3 - Under the same assumptions that underlie the model...Ch. 1.3 - The population model given in (1) fails to take...Ch. 1.3 - Using the concept of net rate introduced in...Ch. 1.3 - Modify the model in Problem 3 for net rate at...Ch. 1.3 - A cup of coffee cools according to Newtons law of...Ch. 1.3 - The ambient temperature Tm in (3) could be a...Ch. 1.3 - Suppose a student carrying a flu virus returns to...Ch. 1.3 - At a time denoted as t = 0 a technological...Ch. 1.3 - Suppose that a large mixing tank initially holds...Ch. 1.3 - Suppose that a large mixing tank initially holds...Ch. 1.3 - What is the differential equation in Problem 10,...Ch. 1.3 - Generalize the model given in equation (8) of this...Ch. 1.3 - Suppose water is leaking from a tank through a...Ch. 1.3 - The right-circular conical tank shown in Figure...Ch. 1.3 - A series circuit contains a resistor and an...Ch. 1.3 - A series circuit contains a resistor and a...Ch. 1.3 - For high-speed motion through the airsuch as the...Ch. 1.3 - A cylindrical barrel s feet in diameter of weight...Ch. 1.3 - After a mass m is attached to a spring, it...Ch. 1.3 - In Problem 19, what is a differential equation for...Ch. 1.3 - A small single-stage rocket is launched vertically...Ch. 1.3 - In Problem 21, the mass m(t) is the sum of three...Ch. 1.3 - By Newtons universal law of gravitation the...Ch. 1.3 - Suppose a hole is drilled through the center of...Ch. 1.3 - Learning Theory In the theory of learning, the...Ch. 1.3 - Forgetfulness In Problem 25 assume that the rate...Ch. 1.3 - Infusion of a Drug A drug is infused into a...Ch. 1.3 - Tractrix A motorboat starts at the origin and...Ch. 1.3 - Reflecting surface Assume that when the plane...Ch. 1.3 - Reread Problem 45 in Exercises 1.1 and then give...Ch. 1.3 - Prob. 31ECh. 1.3 - Prob. 32ECh. 1.3 - Prob. 33ECh. 1.3 - Rotating Fluid As shown in Figure 1.3.24(a), a...Ch. 1.3 - Prob. 35ECh. 1.3 - Prob. 36ECh. 1.3 - Let It snow The snowplow problem is a classic and...Ch. 1.3 - Population Dynamics Suppose that dP/dt = 0.15 P(t)...Ch. 1.3 - Radioactive Decay Suppose that dA/dt = 0.0004332...Ch. 1.3 - Reread this section and classify each mathematical...Ch. 1 - In Problems 1 and 2 fill in the blank and then...Ch. 1 - In Problems 1 and 2 fill in the blank and then...Ch. 1 - In Problems 3 and 4 fill in the blank and then...Ch. 1 - In Problems 3 and 4 fill in the blank and then...Ch. 1 - In Problems 5 and 6 compute y and y and then...Ch. 1 - In Problems 5 and 6 compute y and y and then...Ch. 1 - In Problems 712 match each of the given...Ch. 1 - In Problems 712 match each of the given...Ch. 1 - In Problems 712 match each of the given...Ch. 1 - In Problems 712 match each of the given...Ch. 1 - In Problems 712 match each of the given...Ch. 1 - In Problems 712 match each of the given...Ch. 1 - In Problems 13 and 14 determine by inspection at...Ch. 1 - In Problems 13 and 14 determine by inspection at...Ch. 1 - In Problems 15 and 16 interpret each statement as...Ch. 1 - In Problems 15 and 16 interpret each statement as...Ch. 1 - (a) Give the domain of the function y = x2/3. (b)...Ch. 1 - (a) Verify that the one-parameter family y2 2y =...Ch. 1 - The function y = x 2/x is a solution of the DE xy...Ch. 1 - Suppose that y(x) denotes a solution of the...Ch. 1 - A differential equation may possess more than one...Ch. 1 - What is the slope of the tangent line to the graph...Ch. 1 - In Problems 2326 verify that the indicated...Ch. 1 - In Problems 2326 verify that the indicated...Ch. 1 - In Problems 2326 verify that the indicated...Ch. 1 - In Problems 2326 verify that the indicated...Ch. 1 - In Problems 2730 use (12) of Section 1.1 to verify...Ch. 1 - In Problems 2730 use (12) of Section 1.1 to verify...Ch. 1 - In Problems 2730 use (12) of Section 1.1 to verify...Ch. 1 - In Problems 2730 use (12) of Section 1.1 to verify...Ch. 1 - In Problems 3134 verify that the indicated...Ch. 1 - In Problems 3134 verify that the indicated...Ch. 1 - In Problems 3134 verify that the indicated...Ch. 1 - In Problems 3134 verify that the indicated...Ch. 1 - In Problems 3538, y = c1e3x + c2ex 2x is a...Ch. 1 - In Problems 3538, y = c1e3x + c2ex 2x is a...Ch. 1 - In Problems 3538, y = c1e3x + c2ex 2x is a...Ch. 1 - In Problems 3538, y = c1e3x + c2ex 2x is a...Ch. 1 - The graph of a solution of a second-order...Ch. 1 - A tank in the form of a right-circular cylinder of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Name Harvard University California Institute of Technology Massachusetts Institute of Technology Stanford University Princeton University University of Cambridge University of Oxford University of California, Berkeley Imperial College London Yale University University of California, Los Angeles University of Chicago Johns Hopkins University Cornell University ETH Zurich University of Michigan University of Toronto Columbia University University of Pennsylvania Carnegie Mellon University University of Hong Kong University College London University of Washington Duke University Northwestern University University of Tokyo Georgia Institute of Technology Pohang University of Science and Technology University of California, Santa Barbara University of British Columbia University of North Carolina at Chapel Hill University of California, San Diego University of Illinois at Urbana-Champaign National University of Singapore…arrow_forwardA company found that the daily sales revenue of its flagship product follows a normal distribution with a mean of $4500 and a standard deviation of $450. The company defines a "high-sales day" that is, any day with sales exceeding $4800. please provide a step by step on how to get the answers in excel Q: What percentage of days can the company expect to have "high-sales days" or sales greater than $4800? Q: What is the sales revenue threshold for the bottom 10% of days? (please note that 10% refers to the probability/area under bell curve towards the lower tail of bell curve) Provide answers in the yellow cellsarrow_forwardNo chatgpt plsarrow_forward
- Remix 4. Direction Fields/Phase Portraits. Use the given direction fields to plot solution curves to each of the given initial value problems. (a) x = x+2y 1111 y = -3x+y with x(0) = 1, y(0) = -1 (b) Consider the initial value problem corresponding to the given phase portrait. x = y y' = 3x + 2y Draw two "straight line solutions" passing through (0,0) (c) Make guesses for the equations of the straight line solutions: y = ax.arrow_forwardIt was homeworkarrow_forwardNo chatgpt pls will upvotearrow_forward
- (7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz). Ꮖ (a) (4 points) Show that V x F = 0. (b) (4 points) Find a potential f for the vector field F. (c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use Stokes' Theorem to calculate the line integral Jos F.ds; as denotes the boundary of S. Explain your answer.arrow_forward(3) (16 points) Consider z = uv, u = x+y, v=x-y. (a) (4 points) Express z in the form z = fog where g: R² R² and f: R² → R. (b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate steps otherwise no credit. (c) (4 points) Let S be the surface parametrized by T(x, y) = (x, y, ƒ (g(x, y)) (x, y) = R². Give a parametric description of the tangent plane to S at the point p = T(x, y). (d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic approximation) of F = (fog) at a point (a, b). Verify that Q(x,y) F(a+x,b+y). =arrow_forward(6) (8 points) Change the order of integration and evaluate (z +4ry)drdy . So S√ ² 0arrow_forward
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education

Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education

Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON


Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON

Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,

Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY