The molality or molarity dependent on temperature is should be explained and reason for the usage of molality in freezing-point depression and boiling point elevation calculations are explained. Concept introduction: Elevation of boiling point: The boiling point of the solution is increases when the solute is dissolved in the solvent are called Elevation of boiling point. It is one of the colligative Properties thus, ΔT = iK b m solute ...... ( 1 ) ΔT is boiling-point elevation K b is molal boiling-point elevation constant m is molality of the solute i is the van't Hoff factor Depression in freezing point: The freezing point the solution is decreases when the solute is dissolved in the solvent is called Elevation of boiling point. it is one of the colligative Properties thus ΔT = iK f m solute ...... ( 2 ) ΔT is boiling-point elevation K f is molal freezing-point depression constant m is molality of the solute i is the van't Hoff factor Molarity: The gram moles of solute in liter of solvent is called molarity and in is the term of concentration. Molarity = solute mass g solvent volume L Molality: The gram moles of solute in kilogram of solvent is called molality and in is the term of concentration. Molality = solute mass g solvent mass kg
The molality or molarity dependent on temperature is should be explained and reason for the usage of molality in freezing-point depression and boiling point elevation calculations are explained. Concept introduction: Elevation of boiling point: The boiling point of the solution is increases when the solute is dissolved in the solvent are called Elevation of boiling point. It is one of the colligative Properties thus, ΔT = iK b m solute ...... ( 1 ) ΔT is boiling-point elevation K b is molal boiling-point elevation constant m is molality of the solute i is the van't Hoff factor Depression in freezing point: The freezing point the solution is decreases when the solute is dissolved in the solvent is called Elevation of boiling point. it is one of the colligative Properties thus ΔT = iK f m solute ...... ( 2 ) ΔT is boiling-point elevation K f is molal freezing-point depression constant m is molality of the solute i is the van't Hoff factor Molarity: The gram moles of solute in liter of solvent is called molarity and in is the term of concentration. Molarity = solute mass g solvent volume L Molality: The gram moles of solute in kilogram of solvent is called molality and in is the term of concentration. Molality = solute mass g solvent mass kg
Solution Summary: The author explains the molality or molarity dependent on temperature in freezing-point depression and boiling point elevation calculations.
Interpretation: The molality or molarity dependent on temperature is should be explained and reason for the usage of molality in freezing-point depression and boiling point elevation calculations are explained.
Concept introduction:
Elevation of boiling point:
The boiling point of the solution is increases when the solute is dissolved in the solvent are called Elevation of boiling point. It is one of the colligative Properties thus,
ΔT=iKbmsolute......(1)ΔT is boiling-point elevationKbismolal boiling-point elevation constantmis molality of the soluteiisthevan't Hoff factor
Depression in freezing point:
The freezing point the solution is decreases when the solute is dissolved in the solvent is called Elevation of boiling point. it is one of the colligative Properties thus
ΔT=iKfmsolute......(2)ΔT is boiling-point elevationKfismolal freezing-point depression constantmis molality of the soluteiisthevan't Hoff factor
Molarity:
The gram moles of solute in liter of solvent is called molarity and in is the term of concentration.
Molarity=solutemassgsolventvolumeL
Molality:
The gram moles of solute in kilogram of solvent is called molality and in is the term of concentration.
Please help me answer these three questions. Required info should be in data table.
Draw the major organic substitution product or products for (2R,3S)-2-bromo-3-methylpentane reacting with the given
nucleophile. Clearly drawn the stereochemistry, including a wedged bond, a dashed bond and two in-plane bonds at each
stereogenic center. Omit any byproducts.
Bri
CH3CH2O-
(conc.)
Draw the major organic product or products.
Tartaric acid (C4H6O6) is a diprotic weak acid. A sample of 875 mg tartaric acid are dissolved in 100 mL water and titrated with 0.994 M NaOH.
How many mL of NaOH are needed to reach the first equivalence point?
How many mL of NaOH are needed to reach the second equivalence point?