Modern Physics
Modern Physics
3rd Edition
ISBN: 9781111794378
Author: Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 8P

The v = 0 to v = 1 vibrational transition of the HI molecule occurs at a frequency of 6.69 × 1013 Hz. The same transition for the NO molecule occurs at a frequency of 5.63 × 1013 Hz. Calculate (a) the effective force constant and (b) the amplitude of vibration for each molecule. (c) Explain why the force constant of the NO molecule is so much larger than that of the HI molecule.

Blurred answer
Students have asked these similar questions
The effective spring constant describing the potential energy of the HBr molecule is 410 N/m and that for the NO molecule is 1530 N/m. (a) Calculate the minimum amplitude of vibration for the HBr molecule.   (b) Calculate the minimum amplitude of vibration for the NO molecule.
The frequency of the photon that causes the υ = 0 to υ = 1 transition in the CO molecule is 6.42 x 1013 Hz. We ignore any changes in the rotational energy for this example.(A) Calculate the force constant k for this molecule.                                            (B) What is the classical amplitude A of vibration for this molecule in the υ = 0 vibrational state?
The potential energy of two atoms in a diatomic molecule is approximated by U(r) = a/r12-b/r6, where r is the spacing between atoms and a and b are positive constants. Suppose the distance between the two atoms is equal to the equilibrium distance found in part A. What minimum energy must be added to the molecule to dissociate it - that is, to separate the two atoms to an infinite distance apart? This is called the dissociation energy of the molecule. Express your answer in terms of the variables a and b. For the molecule CO, the equilibrium distance between the carbon and oxygen atoms is 1.13\times 10-10m and the dissociation energy is 1.54\times 10-18J per molecule. Find the value of the constant a. Express your answer in joules times meter in the twelth power. Find the value of the constant b. Express your answer in joules times meter in the sixth power.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY