A sprinter of mass m accelerates uniformly from rest to velocity v in t seconds. (a) Write a symbolic expression for the instantaneous mechanical power P required by the sprinter in terms of force F and velocity v . (b) Use Newton’s second law and a kinematic equation for the velocity at any time to obtain an expression for the instantaneous power in terms of m , a , and t only. (c) If a 75.0-kg sprinter reaches a speed of 11.0 m/s in 5.00 s, calculate the sprinter’s acceleration, assuming it to be constant. (d) Calculate the 75.0-kg sprinter’s instantaneous mechanical power as a function of time t and (e) give the maximum rate at which he burns Calories during the sprint, assuming 25% efficiency of conversion form food energy to mechanical energy.
A sprinter of mass m accelerates uniformly from rest to velocity v in t seconds. (a) Write a symbolic expression for the instantaneous mechanical power P required by the sprinter in terms of force F and velocity v . (b) Use Newton’s second law and a kinematic equation for the velocity at any time to obtain an expression for the instantaneous power in terms of m , a , and t only. (c) If a 75.0-kg sprinter reaches a speed of 11.0 m/s in 5.00 s, calculate the sprinter’s acceleration, assuming it to be constant. (d) Calculate the 75.0-kg sprinter’s instantaneous mechanical power as a function of time t and (e) give the maximum rate at which he burns Calories during the sprint, assuming 25% efficiency of conversion form food energy to mechanical energy.
Solution Summary: The author explains the expression for instantaneous mechanical power, which is equal to the product of force and velocity.
A sprinter of mass m accelerates uniformly from rest to velocity v in t seconds. (a) Write a symbolic expression for the instantaneous mechanical power P required by the sprinter in terms of force F and velocity v. (b) Use Newton’s second law and a kinematic equation for the velocity at any time to obtain an expression for the instantaneous power in terms of m, a, and t only. (c) If a 75.0-kg sprinter reaches a speed of 11.0 m/s in 5.00 s, calculate the sprinter’s acceleration, assuming it to be constant. (d) Calculate the 75.0-kg sprinter’s instantaneous mechanical power as a function of time t and (e) give the maximum rate at which he burns Calories during the sprint, assuming 25% efficiency of conversion form food energy to mechanical energy.
Study of body parts and their functions. In this combined field of study, anatomy refers to studying the body structure of organisms, whereas physiology refers to their function.
Two objects get pushed by the same magnitude of force. One object is 10x more massive. How does the rate of change of momentum for the more massive object compare with the less massive one? Please be able to explain why in terms of a quantitative statement found in the chapter.
A box is dropped on a level conveyor belt that is moving at 4.5 m/s in the +x direction in a shipping facility. The box/belt friction coefficient is 0.15. For what duration will the box slide on the belt? In which direction does the friction force act on the box? How far will the box have moved horizontally by the time it stops sliding along the belt?
Chapter 11 Solutions
Student Solutions Manual With Study Guide, Volume 2 For Serway/vuilles College Physics, 10th
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.