COLLEGE PHYSICS
2nd Edition
ISBN: 9781711470832
Author: OpenStax
Publisher: XANEDU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 7CQ
To determine
Whether or not, the water in the glass would overflow if the ice in it melts.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Part A:
kg
(a) Water at 20 °C (p = 998.3 and v = 1 × 10-6 m²/s) flows through a galvanised
m³
iron pipe (k = 0.15 mm) with a diameter of 25 mm, entering the room at point A and
discharging at point C from the fully opened gate valve B at a volumetric flow rate of
0.003 m³/s. Determine the required pressure at A, considering all the losses that occur
in the system described in Figure Q1. Loss coefficients for pipe fittings have been
provided in Table 1.
[25 marks]
(b) Due to corrosion within the pipe, the average flow velocity at C is observed to be
V2 m/s after 10 years of operation whilst the pressure at A remains the same as
determined in (a). Determine the average annual rate of growth of k within the pipe.
[15 marks]
4₁
Figure Q1. Pipe system
Page 2
25 mm
For an independent study project, you design an experiment to measure the speed of light. You propose to bounce laser light off a mirror that is 53.5 km due east and have it detected by a light sensor that is 119 m due south of the laser. The first problem is to orient the mirror so that the laser light reflects off the mirror and into the light sensor.
(a) Determine the angle that the normal to the mirror should make with respect to due west.(b) Since you can read your protractor only so accurately, the mirror is slightly misaligned and the actual angle between the normal to the mirror and due west exceeds the desired amount by 0.003°. Determine how far south you need to move the light sensor in order to detect the reflected laser light.
A mirror hangs 1.67 m above the floor on a vertical wall. A ray of sunlight, reflected off the mirror, forms a spot on the floor 1.41 m from the wall. Later in the day, the spot has moved to a point 2.50 m from the
wall.
(a) What is the change in the angle of elevation of the Sun, between the two observations?
Chapter 11 Solutions
COLLEGE PHYSICS
Ch. 11 - What physical characteristic distinguishes a fluid...Ch. 11 - Which of the following substances are fluids at...Ch. 11 - Why are gases easier to compress than liquids and...Ch. 11 - How do gases differ from liquids?Ch. 11 - Approximately how does the density of air vary...Ch. 11 - Give an example in which density is used to...Ch. 11 - Prob. 7CQCh. 11 - How is pressure related to the sharpness of a...Ch. 11 - Why does a dull hypodermic needle hurt more than a...Ch. 11 - The outward force on one end of an air tank was...
Ch. 11 - Why is force exerted by static fluids always...Ch. 11 - In a remote location near the North Pole, an...Ch. 11 - How do jogging on soft ground and wearing padded...Ch. 11 - Toe dancing (as in ballet) is much harder on toes...Ch. 11 - How do you convert pressure units like millimeters...Ch. 11 - Atmospheric pressure exerts a large force (equal...Ch. 11 - Why does atmospheric pressure decrease more...Ch. 11 - What are two reasons why mercury rather than water...Ch. 11 - Prob. 19CQCh. 11 - Why is it difficult to swim under water in the...Ch. 11 - Is there a net force on a due to atmospheric...Ch. 11 - Does atmospheric pressure add to the gas pressure...Ch. 11 - You can break a strong wine bottle by pounding a...Ch. 11 - Suppose the master cylinder in a hydraulic system...Ch. 11 - Explain why the fluid reaches equal levels on...Ch. 11 - Prob. 26CQCh. 11 - Considering the magnitude of typical arterial...Ch. 11 - More force is required to pull the plug in a full...Ch. 11 - Do fluids exert buoyant forces in a "weightless"...Ch. 11 - Will the same ship float higher in salt water than...Ch. 11 - Marbles dropped into a partially filled bathtub...Ch. 11 - The density of oil is less than that of water, yet...Ch. 11 - Is surface tension due to cohesive or adhesive...Ch. 11 - Is capillary action due to cohesive or adhesive...Ch. 11 - Birds such as ducks, geese, and swans have greater...Ch. 11 - Water beads up on an oily sunbather, but not on...Ch. 11 - Could capillary action be used to move fluids in a...Ch. 11 - What effect does capillary action have on the...Ch. 11 - Pressure between the inside chest wall and the...Ch. 11 - Gold is sold by the troy ounce (31.103 g). What is...Ch. 11 - Mercury is commonly supplied in flasks containing...Ch. 11 - (a) What is the mass of a deep breath of air...Ch. 11 - A straightforward method of finding the density of...Ch. 11 - Suppose you have a coffee mug with a circular...Ch. 11 - (a) A rectangular gasoline tank can hold 50.0 kg...Ch. 11 - A trash compactor can reduce the volume of its...Ch. 11 - A 2.50-kg steel gasoline can holds 20.0 L of...Ch. 11 - What is the density of 18.0-karat gold that is a...Ch. 11 - There is relatively little empty space between...Ch. 11 - As a woman walks, her entire weight is momentarily...Ch. 11 - The pressure exerted by a phonograph needle on a...Ch. 11 - Nail tips exert tremendous pressures when they are...Ch. 11 - What depth of mercury creates a pressure of 1.00...Ch. 11 - The greatest ocean depths on the Earth are found...Ch. 11 - Verify that the SI unit of hpg is N/m2.Ch. 11 - Water towers store water above the level of...Ch. 11 - The aqueous humor in a person's eye is exerting a...Ch. 11 - How much force is exerted on one side of an 8.50...Ch. 11 - What pressure is exerted on the bottom of a...Ch. 11 - Calculate the average pressure exerted on the palm...Ch. 11 - The left side of the heart creates a pressure of...Ch. 11 - Prob. 23PECh. 11 - How much pressure is transmitted in the hydraulic...Ch. 11 - What force must be exerted on the master cylinder...Ch. 11 - A crass host pours the remnants of several bottles...Ch. 11 - A certain hydraulic system is designed to exert a...Ch. 11 - (a) Verify that work input equals work output for...Ch. 11 - Prob. 29PECh. 11 - (a) Convert normal blood pressure readings of 120...Ch. 11 - How tall must a water-filled manometer be to...Ch. 11 - Pressure cookers have been around for more than...Ch. 11 - Suppose you measure a standing person's blood...Ch. 11 - A submarine is stranded on the bottom of the ocean...Ch. 11 - Assuming bicycle tires are perfectly flexible and...Ch. 11 - What fraction of ice is submerged when it floats...Ch. 11 - Logs sometimes float vertically in a lake because...Ch. 11 - Find the density of a fluid in which a hydrometer...Ch. 11 - If your body has a density of 995 kg/m3, what...Ch. 11 - Bird bones have air pockets in them to reduce...Ch. 11 - A rock with a mass of 540 g in air is found to...Ch. 11 - Archimedes' principle can be used to calculate the...Ch. 11 - In an immersion measurement of a woman's density,...Ch. 11 - Some fish have a density slightly less than that...Ch. 11 - (a) Calculate the buoyant force on a 2.00-L helium...Ch. 11 - (a) What is the density of a woman who floats in...Ch. 11 - A certain man has a mass of 80 kg and a density of...Ch. 11 - A simple compass can be made by placing a small...Ch. 11 - What fraction of an iron anchor's weight will be...Ch. 11 - Scurrilous con artists have been known to...Ch. 11 - A twin-sized air mattress used for camping has...Ch. 11 - Prob. 52PECh. 11 - (a) A 75.0-kg man floats in freshwater with 3.00%...Ch. 11 - What is the pressure inside an alveolus having a...Ch. 11 - (a) The pressure inside an alveolus with a 2.00104...Ch. 11 - What is the gauge pressure in millimeters of...Ch. 11 - Prob. 57PECh. 11 - Prob. 58PECh. 11 - Prob. 59PECh. 11 - Prob. 60PECh. 11 - If the gauge pressure inside a rubber balloon with...Ch. 11 - Calculate the gauge pressures inside...Ch. 11 - Suppose water is raised by capillary action to a...Ch. 11 - Calculate the contact angle for olive oil if...Ch. 11 - When two soap bubbles touch, the larger is...Ch. 11 - Calculate the ratio of the heights to which water...Ch. 11 - What is the ratio of heights to which ethyl...Ch. 11 - During forced exhalation, such as when blowing up...Ch. 11 - You can chew through very tough objects with your...Ch. 11 - One way to force air into an unconscious person's...Ch. 11 - Heroes in movies hide beneath water and breathe...Ch. 11 - Gauge pressure in the fluid surrounding an...Ch. 11 - A full-term fetus typically has a mass of 3.50 kg....Ch. 11 - If the pressure in the esophagus is -2.00 mm Hg...Ch. 11 - Prob. 75PECh. 11 - Calculate the maximum force in newtons exerted by...Ch. 11 - During heavy lifting, a disk between spinal...Ch. 11 - When a person sits erect, increasing the vertical...Ch. 11 - (a) How high will water rise in a glass capillary...Ch. 11 - Prob. 80PECh. 11 - Suppose you hit a steel nail with a 0.500-kg...Ch. 11 - Calculate the pressure due to the ocean at the...Ch. 11 - Prob. 83PECh. 11 - Some miners wish to remove water from a mine...Ch. 11 - You are pumping up a bicycle tire with a hand...Ch. 11 - Consider a group of people trying to stay afloat...Ch. 11 - The alveoli in emphysema victims are damaged and...Ch. 11 - Prob. 1TPCh. 11 - Prob. 2TPCh. 11 - Prob. 3TPCh. 11 - Prob. 4TPCh. 11 - Prob. 5TP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- It is not (theta 1i) or (pi/2 - theta 2i)arrow_forwardAssume the helium-neon lasers commonly used in student physics laboratories have power outputs of 0.250 mW. (a) If such a laser beam is projected onto a circular spot 3.40 mm in diameter, what is its intensity (in watts per meter squared)? 27.5 W/m² (b) Find the peak magnetic field strength (in teslas). 8.57e-7 X T (c) Find the peak electric field strength (in volts per meter). 144 V/marrow_forwardIdentify the most likely substancearrow_forward
- A proton moves at 5.20 × 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 83.33 ☑ Your response differs from the correct answer by more than 10%. Double check your calculations. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 2.77 Your response differs from the correct answer by more than 10%. Double check your calculations. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. 5.4e5 V × Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + [6.68e4 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each…arrow_forward(1) Fm Fmn mn Fm B W₁ e Fmt W 0 Fit Wt 0 W Fit Fin n Fmt n As illustrated in Fig. consider the person performing extension/flexion movements of the lower leg about the knee joint (point O) to investigate the forces and torques produced by muscles crossing the knee joint. The setup of the experiment is described in Example above. The geometric parameters of the model under investigation, some of the forces acting on the lower leg and its free-body diagrams are shown in Figs. and For this system, the angular displacement, angular velocity, and angular accelera- tion of the lower leg were computed using data obtained during the experiment such that at an instant when 0 = 65°, @ = 4.5 rad/s, and a = 180 rad/s². Furthermore, for this sys- tem assume that a = 4.0 cm, b = 23 cm, ß = 25°, and the net torque generated about the knee joint is M₁ = 55 Nm. If the torque generated about the knee joint by the weight of the lower leg is Mw 11.5 Nm, determine: = The moment arm a of Fm relative to the…arrow_forwardThe figure shows a particle that carries a charge of 90 = -2.50 × 106 C. It is moving along the +y -> axis at a speed of v = 4.79 × 106 m/s. A magnetic field B of magnitude 3.24 × 10-5 T is directed along the +z axis, and an electric field E of magnitude 127 N/C points along the -x axis. Determine (a) the magnitude and (b) direction (as an angle within x-y plane with respect to +x- axis in the range (-180°, 180°]) of the net force that acts on the particle. +x +z AB 90 +yarrow_forward
- Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 1.00 μC, and L = 0.850 m). Calculate the total electric force on the 7.00-μC charge. magnitude direction N ° (counterclockwise from the +x axis) y 7.00 με 9 L 60.0° x -4.00 μC ①arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 9.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol. (b) Imagine adding electrons to the pin until the negative charge has the very large value 1.00 mC. How many electrons are added for every 109 electrons already present?arrow_forward(a) A physics lab instructor is working on a new demonstration. She attaches two identical copper spheres with mass m = 0.180 g to cords of length L as shown in the figure. A Both spheres have the same charge of 6.80 nC, and are in static equilibrium when 0 = 4.95°. What is L (in m)? Assume the cords are massless. 0.180 Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your Coulomb force equation. m (b) What If? The charge on both spheres is increased until each cord makes an angle of 0 = 9.90° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case? 9.60 Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. ncarrow_forward
- A proton moves at 5.20 x 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 83.33 Your response differs from the correct answer by more than 10%. Double check your calculations. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 2.77 Your response differs from the correct answer by more than 10%. Double check your calculations. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. = 5.4e5 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + 6.68e4 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step…arrow_forward(a) A physics lab instructor is working on a new demonstration. She attaches two identical copper spheres with mass m = 0.180 g to cords of length L as shown in the figure. A Both spheres have the same charge of 6.80 nC, and are in static equilibrium when = 4.95°. What is L (in m)? Assume the cords are massless. 0.150 Draw a free-body diagram, apply Newton's second law for a particle in equilibrium to one of the spheres. Find an equation for the distance between the two spheres in terms of L and 0, and use this expression in your Coulomb force equation. m (b) What If? The charge on both spheres is increased until each cord makes an angle of 0 = 9.90° with the vertical. If both spheres have the same electric charge, what is the charge (in nC) on each sphere in this case? 13.6 ☑ Use the same reasoning as in part (a), only now, use the length found in part (a) and the new angle to solve for the charge. nCarrow_forwardA proton moves at 5.20 x 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 10³ N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 1.15e-7 ☑ Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 5.33e-3 ☑ Your response is off by a multiple of ten. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. | ↑ + jkm/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY