BIO Predict/Calculate Force to Hold a Baseball A person holds a 1.42-N baseball in his hand, a distance of 34.0 cm from the elbow joint, as shown in Figure 11-40 . The biceps attached at a distance of 2.75 cm from the elbow, exerts an upward force of 12.6 N on the forearm. Consider the forearm and hand to be a uniform rod with a mass of 1.20 kg. (a) Calculate the net torque acting on the forearm and hand. Use the elbow joint as the axis of rotation. (b) If the net torque obtained in part (a) is nonzero, in which direction will the forearm and hand rotate? (c) Would the torque exerted on the forearm by the biceps increase or decrease if the biceps were attached farther from the elbow joint? Figure 11-40 Problem 6 and 23
BIO Predict/Calculate Force to Hold a Baseball A person holds a 1.42-N baseball in his hand, a distance of 34.0 cm from the elbow joint, as shown in Figure 11-40 . The biceps attached at a distance of 2.75 cm from the elbow, exerts an upward force of 12.6 N on the forearm. Consider the forearm and hand to be a uniform rod with a mass of 1.20 kg. (a) Calculate the net torque acting on the forearm and hand. Use the elbow joint as the axis of rotation. (b) If the net torque obtained in part (a) is nonzero, in which direction will the forearm and hand rotate? (c) Would the torque exerted on the forearm by the biceps increase or decrease if the biceps were attached farther from the elbow joint? Figure 11-40 Problem 6 and 23
BIO Predict/Calculate Force to Hold a Baseball A person holds a 1.42-N baseball in his hand, a distance of 34.0 cm from the elbow joint, as shown in Figure 11-40. The biceps attached at a distance of 2.75 cm from the elbow, exerts an upward force of 12.6 N on the forearm. Consider the forearm and hand to be a uniform rod with a mass of 1.20 kg. (a) Calculate the net torque acting on the forearm and hand. Use the elbow joint as the axis of rotation. (b) If the net torque obtained in part (a) is nonzero, in which direction will the forearm and hand rotate? (c) Would the torque exerted on the forearm by the biceps increase or decrease if the biceps were attached farther from the elbow joint?
A pendulum has a 0.4-m-long cord and is given a tangential velocity of 0.2 m/s toward the
vertical from a position 0 = 0.3 rad.
Part A
Determine the equation which describes the angular motion.
Express your answer in terms of the variable t. Express coefficients in radians to three significant figures.
ΜΕ ΑΣΦ
vec
(t)=0.3 cos (4.95t) + 0.101 sin (4.95t)
Submit Previous Answers Request Answer
× Incorrect; Try Again; 6 attempts remaining
Part A
■Review
The uniform 150-lb stone (rectangular block) is being turned over on its side by pulling the
vertical cable slowly upward until the stone begins to tip.
(Figure 1)
If it then falls freely (T = 0) from an essentially balanced at-rest position, determine the speed at which the corner A strikes the pad at B. The stone does not slip at its corner C as it falls. Suppose that height of the stone is
L = 1.2 ft.
Express your answer to three significant figures and include the appropriate units.
?
ft
VA 10.76
S
Submit Previous Answers Request Answer
× Incorrect; Try Again; 6 attempts remaining
Consider the circuit shown in the figure. The battery has emf ε = 69 volts and negligible internal resistance. The inductance is L = 0.4 H and the resistances are R 1 = 12 Ω and R 2 = 9.0 Ω. Initially the switch S is open and no currents flow. Then the switch is closed. After leaving the switch closed for a very long time, it is opened again. Just after it is opened, what is the current in R 1?
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.