
Calculus: An Applied Approach (MindTap Course List)
10th Edition
ISBN: 9781305860919
Author: Ron Larson
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 62RE
To determine
To calculate: The general solution of first order linear
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Determine the values and locations of the global (absolute) and local extrema on the graph given.
Assume the domain is a closed interval and the graph represents the entirety of the function.
3
y
-6-5-4-3
2
1
-1
-2
-3
Separate multiple answers with a comma.
Global maximum: y
Global minimum: y
Local maxima: y
Local minima: y
x
6
at a
at a
at x=
at x=
A ball is thrown into the air and its height (in meters) is given by h (t)
in seconds.
-4.92 + 30t+1, where t is
a. After how long does the ball reach its maximum height? Round to 2 decimal places.
seconds
b. What is the maximum height of the ball? Round to 2 decimal places.
meters
Determine where the absolute and local extrema occur on the graph given. Assume the domain is a
closed interval and the graph represents the entirety of the function.
1.5
y
1
0.5
-3
-2
-0.5
-1
-1.5
Separate multiple answers with a comma.
Absolute maximum at
Absolute minimum at
Local maxima at
Local minima at a
x
2
3
а
Chapter 11 Solutions
Calculus: An Applied Approach (MindTap Course List)
Ch. 11.1 - Checkpoint 1 Worked-out solution available at...Ch. 11.1 - Prob. 2CPCh. 11.1 - Prob. 3CPCh. 11.1 - Prob. 4CPCh. 11.1 - Prob. 1SWUCh. 11.1 - Prob. 2SWUCh. 11.1 - Prob. 3SWUCh. 11.1 - Prob. 4SWUCh. 11.1 - Prob. 5SWUCh. 11.1 - Prob. 6SWU
Ch. 11.1 - Verifying Solutions In Exercises 112, verify the...Ch. 11.1 - Prob. 2ECh. 11.1 - Prob. 3ECh. 11.1 - Prob. 4ECh. 11.1 - Prob. 5ECh. 11.1 - Prob. 6ECh. 11.1 - Prob. 7ECh. 11.1 - Prob. 8ECh. 11.1 - Verifying Solutions In Exercises 1-12, verify the...Ch. 11.1 - Prob. 10ECh. 11.1 - Prob. 11ECh. 11.1 - Prob. 12ECh. 11.1 - Prob. 13ECh. 11.1 - Prob. 14ECh. 11.1 - Determining Solutions In Exercises 1316, determine...Ch. 11.1 - Prob. 16ECh. 11.1 - Determining Solutions In Exercises 1720, determine...Ch. 11.1 - Prob. 18ECh. 11.1 - Prob. 19ECh. 11.1 - Prob. 20ECh. 11.1 - Prob. 21ECh. 11.1 - Prob. 22ECh. 11.1 - Prob. 23ECh. 11.1 - Prob. 24ECh. 11.1 - Prob. 25ECh. 11.1 - Prob. 26ECh. 11.1 - Prob. 27ECh. 11.1 - Prob. 28ECh. 11.1 - Prob. 29ECh. 11.1 - Prob. 30ECh. 11.1 - Prob. 31ECh. 11.1 - Prob. 32ECh. 11.1 - Prob. 33ECh. 11.1 - Prob. 34ECh. 11.1 - Prob. 35ECh. 11.1 - Prob. 36ECh. 11.1 - Prob. 37ECh. 11.1 - Prob. 38ECh. 11.1 - Prob. 39ECh. 11.1 - Investment The rate of growth of an investment is...Ch. 11.1 - Prob. 41ECh. 11.1 - Prob. 42ECh. 11.1 - Prob. 43ECh. 11.1 - Prob. 44ECh. 11.1 - Prob. 45ECh. 11.1 - Prob. 46ECh. 11.2 - Checkpoint 1 Worked-out solution available at...Ch. 11.2 - Prob. 2CPCh. 11.2 - Prob. 3CPCh. 11.2 - Prob. 4CPCh. 11.2 - Prob. 5CPCh. 11.2 - Prob. 6CPCh. 11.2 - Prob. 1SWUCh. 11.2 - Prob. 2SWUCh. 11.2 - Prob. 3SWUCh. 11.2 - Prob. 4SWUCh. 11.2 - Prob. 5SWUCh. 11.2 - Prob. 6SWUCh. 11.2 - Prob. 7SWUCh. 11.2 - Prob. 8SWUCh. 11.2 - Prob. 9SWUCh. 11.2 - Prob. 10SWUCh. 11.2 - Prob. 1ECh. 11.2 - Prob. 2ECh. 11.2 - Prob. 3ECh. 11.2 - Prob. 4ECh. 11.2 - Prob. 5ECh. 11.2 - Prob. 6ECh. 11.2 - Prob. 7ECh. 11.2 - Prob. 8ECh. 11.2 - Prob. 9ECh. 11.2 - Prob. 10ECh. 11.2 - Prob. 11ECh. 11.2 - Prob. 12ECh. 11.2 - Prob. 13ECh. 11.2 - Solving a Differential Equation In Exercises 7-26,...Ch. 11.2 - Prob. 15ECh. 11.2 - Prob. 16ECh. 11.2 - Prob. 17ECh. 11.2 - Prob. 18ECh. 11.2 - Prob. 19ECh. 11.2 - Prob. 20ECh. 11.2 - Prob. 21ECh. 11.2 - Prob. 22ECh. 11.2 - Prob. 23ECh. 11.2 - Prob. 24ECh. 11.2 - Prob. 25ECh. 11.2 - Prob. 26ECh. 11.2 - Prob. 27ECh. 11.2 - Prob. 28ECh. 11.2 - Prob. 29ECh. 11.2 - Prob. 30ECh. 11.2 - Prob. 31ECh. 11.2 - Finding a Particular Solution In Exercises 31-38,...Ch. 11.2 - Prob. 33ECh. 11.2 - Finding a Particular Solution In Exercises 31-38,...Ch. 11.2 - Prob. 35ECh. 11.2 - Finding a Particular Solution In Exercises 31-38,...Ch. 11.2 - Prob. 37ECh. 11.2 - Prob. 38ECh. 11.2 - Prob. 39ECh. 11.2 - Prob. 40ECh. 11.2 - Prob. 41ECh. 11.2 - Prob. 42ECh. 11.2 - Prob. 43ECh. 11.2 - Prob. 44ECh. 11.2 - Radioactive Decay The rate of decomposition of...Ch. 11.2 - Radioactive Decay The rate of decomposition of...Ch. 11.2 - Solve the differential equation. Weight Gain A...Ch. 11.2 - Prob. 1QYCh. 11.2 - Prob. 2QYCh. 11.2 - Prob. 3QYCh. 11.2 - Prob. 4QYCh. 11.2 - Prob. 5QYCh. 11.2 - Prob. 6QYCh. 11.2 - Prob. 7QYCh. 11.2 - Prob. 8QYCh. 11.2 - Prob. 9QYCh. 11.2 - Prob. 10QYCh. 11.2 - Prob. 11QYCh. 11.2 - Prob. 12QYCh. 11.2 - Prob. 13QYCh. 11.2 - Prob. 14QYCh. 11.2 - Prob. 15QYCh. 11.2 - Ignoring resistance, a sailboat starting from rest...Ch. 11.3 - Checkpoint 1 Worked-out solution available at...Ch. 11.3 - Prob. 2CPCh. 11.3 - Prob. 3CPCh. 11.3 - Prob. 1SWUCh. 11.3 - Prob. 2SWUCh. 11.3 - Prob. 3SWUCh. 11.3 - Prob. 4SWUCh. 11.3 - Prob. 5SWUCh. 11.3 - Prob. 6SWUCh. 11.3 - Prob. 7SWUCh. 11.3 - Prob. 8SWUCh. 11.3 - In Exercises 5-10, find the indefinite integral....Ch. 11.3 - Prob. 10SWUCh. 11.3 - Prob. 1ECh. 11.3 - Prob. 2ECh. 11.3 - Prob. 3ECh. 11.3 - Prob. 4ECh. 11.3 - Prob. 5ECh. 11.3 - Prob. 6ECh. 11.3 - Prob. 7ECh. 11.3 - Prob. 8ECh. 11.3 - Solving a Linear Differential Equation In...Ch. 11.3 - Prob. 10ECh. 11.3 - Solving a Linear Differential Equation In...Ch. 11.3 - Solving a Linear Differential Equation In...Ch. 11.3 - Prob. 13ECh. 11.3 - Prob. 14ECh. 11.3 - Prob. 15ECh. 11.3 - Solving a Linear Differential Equation In...Ch. 11.3 - Prob. 17ECh. 11.3 - Solving a Linear Differential Equation In...Ch. 11.3 - Using Two Methods In Exercises 19-22, solve for y...Ch. 11.3 - Prob. 20ECh. 11.3 - Prob. 21ECh. 11.3 - Prob. 22ECh. 11.3 - Prob. 23ECh. 11.3 - Prob. 24ECh. 11.3 - Prob. 25ECh. 11.3 - Prob. 26ECh. 11.3 - Prob. 27ECh. 11.3 - Prob. 28ECh. 11.3 - Prob. 29ECh. 11.3 - Prob. 30ECh. 11.3 - Prob. 31ECh. 11.3 - Prob. 32ECh. 11.3 - Finding a Particular Solution In Exercises 27-34,...Ch. 11.3 - Prob. 34ECh. 11.3 - Prob. 35ECh. 11.3 - Prob. 36ECh. 11.3 - Vertical Motion A falling object encounters air...Ch. 11.3 - Velocity A booster rocket carrying an observation...Ch. 11.3 - Learning Curve The management at a medical supply...Ch. 11.3 - Investment Let A he the amount in a fund earning...Ch. 11.4 - Prob. 1CPCh. 11.4 - Prob. 2CPCh. 11.4 - Checkpoint 3 Worked-out solution available at...Ch. 11.4 - Prob. 4CPCh. 11.4 - Checkpoint 5 Worked-out solution available at...Ch. 11.4 - Prob. 1SWUCh. 11.4 - Prob. 2SWUCh. 11.4 - Prob. 3SWUCh. 11.4 - Prob. 4SWUCh. 11.4 - Prob. 5SWUCh. 11.4 - Prob. 6SWUCh. 11.4 - Prob. 7SWUCh. 11.4 - Prob. 8SWUCh. 11.4 - Prob. 9SWUCh. 11.4 - Prob. 10SWUCh. 11.4 - Prob. 1ECh. 11.4 - Prob. 2ECh. 11.4 - Advertising Awareness In Exercises 3 and 4, use...Ch. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - Prob. 7ECh. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - Prob. 10ECh. 11.4 - Prob. 11ECh. 11.4 - Prob. 12ECh. 11.4 - Prob. 13ECh. 11.4 - Prob. 14ECh. 11.4 - Prob. 15ECh. 11.4 - Prob. 16ECh. 11.4 - Prob. 17ECh. 11.4 - Chemistry A wet towel hung from a clothesline to...Ch. 11.4 - Prob. 19ECh. 11.4 - Prob. 20ECh. 11.4 - Biology A population of eight beavers has been...Ch. 11.4 - Prob. 22ECh. 11.4 - Prob. 23ECh. 11.4 - Prob. 24ECh. 11.4 - Chemical Mixture A 100-gallon tank is full of a...Ch. 11.4 - Chemical Mixture A 200-gallon tank is half full of...Ch. 11.4 - Prob. 29ECh. 11.4 - Prob. 30ECh. 11.4 - Prob. 31ECh. 11.4 - Prob. 32ECh. 11.4 - Prob. 33ECh. 11.4 - Prob. 34ECh. 11.4 - Prob. 35ECh. 11.4 - Prob. 36ECh. 11.4 - Prob. 37ECh. 11.4 - Prob. 38ECh. 11 - Prob. 1RECh. 11 - Prob. 2RECh. 11 - Prob. 3RECh. 11 - Prob. 4RECh. 11 - Prob. 5RECh. 11 - Prob. 6RECh. 11 - Prob. 7RECh. 11 - Prob. 8RECh. 11 - Prob. 9RECh. 11 - Prob. 10RECh. 11 - Prob. 11RECh. 11 - Prob. 12RECh. 11 - Prob. 13RECh. 11 - Prob. 14RECh. 11 - Finding a Particular Solution In Exercises 15 and...Ch. 11 - Prob. 16RECh. 11 - Prob. 17RECh. 11 - Prob. 18RECh. 11 - Prob. 19RECh. 11 - Prob. 20RECh. 11 - Prob. 21RECh. 11 - Prob. 22RECh. 11 - Prob. 23RECh. 11 - Prob. 24RECh. 11 - Prob. 25RECh. 11 - Prob. 26RECh. 11 - Prob. 27RECh. 11 - Prob. 28RECh. 11 - Prob. 29RECh. 11 - Prob. 30RECh. 11 - Prob. 31RECh. 11 - Prob. 32RECh. 11 - Prob. 33RECh. 11 - Prob. 34RECh. 11 - Prob. 35RECh. 11 - Prob. 36RECh. 11 - Prob. 37RECh. 11 - Prob. 38RECh. 11 - Prob. 39RECh. 11 - Prob. 40RECh. 11 - Prob. 41RECh. 11 - Solving a Differential Equation In Exercises...Ch. 11 - Prob. 43RECh. 11 - Prob. 44RECh. 11 - Prob. 45RECh. 11 - Prob. 46RECh. 11 - Prob. 47RECh. 11 - Prob. 48RECh. 11 - Prob. 49RECh. 11 - Prob. 50RECh. 11 - Prob. 51RECh. 11 - Prob. 52RECh. 11 - Prob. 53RECh. 11 - Prob. 54RECh. 11 - Prob. 55RECh. 11 - Prob. 56RECh. 11 - Solving a Linear Differential Equation In...Ch. 11 - Prob. 58RECh. 11 - Prob. 59RECh. 11 - Prob. 60RECh. 11 - Prob. 61RECh. 11 - Prob. 62RECh. 11 - Prob. 63RECh. 11 - Prob. 64RECh. 11 - Prob. 65RECh. 11 - Prob. 66RECh. 11 - Safety Assume the rate of change per hour in the...Ch. 11 - Prob. 68RECh. 11 - Prob. 69RECh. 11 - Prob. 70RECh. 11 - Prob. 71RECh. 11 - Prob. 72RECh. 11 - Prob. 73RECh. 11 - Prob. 74RECh. 11 - Prob. 75RECh. 11 - Chemical Mixture A tank contains 30 gallons of a...Ch. 11 - Chemical Mixture A tank contains 20 gallons of a...Ch. 11 - Prob. 1TYSCh. 11 - Prob. 2TYSCh. 11 - Prob. 3TYSCh. 11 - Prob. 4TYSCh. 11 - Prob. 5TYSCh. 11 - Prob. 6TYSCh. 11 - Prob. 7TYSCh. 11 - Prob. 8TYSCh. 11 - Prob. 9TYSCh. 11 - Prob. 10TYSCh. 11 - Prob. 11TYSCh. 11 - A lamb that weighs 10 pounds at birth gains weight...Ch. 11 - Prob. 13TYS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- A company that produces cell phones has a cost function of C = x² - 1000x + 36100, where C is the cost in dollars and x is the number of cell phones produced (in thousands). How many units of cell phones (in thousands) minimizes this cost function? Round to the nearest whole number, if necessary. thousandarrow_forwardUnder certain conditions, the number of diseased cells N(t) at time t increases at a rate N'(t) = Aekt, where A is the rate of increase at time 0 (in cells per day) and k is a constant. (a) Suppose A = 60, and at 3 days, the cells are growing at a rate of 180 per day. Find a formula for the number of cells after t days, given that 200 cells are present at t = 0. (b) Use your answer from part (a) to find the number of cells present after 8 days. (a) Find a formula for the number of cells, N(t), after t days. N(t) = (Round any numbers in exponents to five decimal places. Round all other numbers to the nearest tenth.)arrow_forwardThe marginal revenue (in thousands of dollars) from the sale of x handheld gaming devices is given by the following function. R'(x) = 4x (x² +26,000) 2 3 (a) Find the total revenue function if the revenue from 125 devices is $17,939. (b) How many devices must be sold for a revenue of at least $50,000? (a) The total revenue function is R(x) = (Round to the nearest integer as needed.) given that the revenue from 125 devices is $17,939.arrow_forward
- Use substitution to find the indefinite integral. S 2u √u-4 -du Describe the most appropriate substitution case and the values of u and du. Select the correct choice below and fill in the answer boxes within your choice. A. Substitute u for the quantity in the numerator. Let v = , so that dv = ( ) du. B. Substitute u for the quantity under the root. Let v = u-4, so that dv = (1) du. C. Substitute u for the quantity in the denominator. Let v = Use the substitution to evaluate the integral. so that dv= ' ( du. 2u -du= √√u-4arrow_forwardUse substitution to find the indefinite integral. Зи u-8 du Describe the most appropriate substitution case and the values of u and du. Select the correct choice below and fill in the answer boxes within your choice. A. Substitute u for the quantity in the numerator. Let v = , so that dv = ( ( ) du. B. Substitute u for the quantity under the root. Let v = u-8, so that dv = (1) du. C. Substitute u for the quantity in the denominator. Let v = so that dv= ( ) du. Use the substitution to evaluate the integral. S Зи -du= u-8arrow_forwardFind the derivative of the function. 5 1 6 p(x) = -24x 5 +15xarrow_forward
- ∞ 2n (4n)! Let R be the radius of convergence of the series -x2n. Then the value of (3" (2n)!)² n=1 sin(2R+4/R) is -0.892 0.075 0.732 -0.812 -0.519 -0.107 -0.564 0.588arrow_forwardFind the cost function if the marginal cost function is given by C'(x) = x C(x) = 2/5 + 5 and 32 units cost $261.arrow_forwardFind the cost function if the marginal cost function is C'(x) = 3x-4 and the fixed cost is $9. C(x) = ☐arrow_forward
- For the power series ∞ (−1)" (2n+1)(x+4)” calculate Z, defined as follows: n=0 (5 - 1)√n if the interval of convergence is (a, b), then Z = sin a + sin b if the interval of convergence is (a, b), then Z = cos asin b if the interval of convergence is (a, b], then Z = sin a + cos b if the interval of convergence is [a, b], then Z = cos a + cos b Then the value of Z is -0.502 0.117 -0.144 -0.405 0.604 0.721 -0.950 -0.588arrow_forwardH-/ test the Series 1.12 7√2 by ratio best 2n 2-12- nz by vitio test enarrow_forwardHale / test the Series 1.12 7√2 2n by ratio best 2-12- nz by vico tio test en - プ n2 rook 31() by mood fest 4- E (^)" by root test Inn 5-E 3' b. E n n³ 2n by ratio test ٤ by Comera beon Test (n+2)!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY