WEB ASSIGN FOR ZILL'S DIFFERENTIAL EQUAT
9th Edition
ISBN: 9780357539545
Author: ZILL
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1.1, Problem 61E
(a)
To determine
The two constant solutions of the differential equation.
(b)
To determine
The intervals on the
(c)
To determine
To explain: The reason why
(d)
To determine
To plot: The graph of the given function.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
No chatgpt pls
Remix
4. Direction Fields/Phase Portraits. Use the given direction fields to plot solution curves
to each of the given initial value problems.
(a)
x = x+2y
1111
y = -3x+y
with x(0) = 1, y(0) = -1
(b) Consider the initial value problem corresponding to the given phase portrait.
x = y
y' = 3x + 2y
Draw two "straight line solutions"
passing through (0,0)
(c) Make guesses for the equations of the straight line solutions: y = ax.
It was homework
Chapter 1 Solutions
WEB ASSIGN FOR ZILL'S DIFFERENTIAL EQUAT
Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 9 and 10 determine whether the given...Ch. 1.1 - In Problems 9 and 10 determine whether the given...
Ch. 1.1 - In Problems 1114 verify that the indicated...Ch. 1.1 - In Problems 1114 verify that the indicated...Ch. 1.1 - In Problems 1114 verify that the indicated...Ch. 1.1 - In Problems 1114 verify that the indicated...Ch. 1.1 - In Problems 1518 verify that the indicated...Ch. 1.1 - In Problems 1518 verify that the indicated...Ch. 1.1 - In Problems 1518 verify that the indicated...Ch. 1.1 - In Problems 1518 verify that the indicated...Ch. 1.1 - In Problems 19 and 20 verify that the indicated...Ch. 1.1 - In Problems 19 and 20 verify that the indicated...Ch. 1.1 - In Problems 2124 verify that the indicated family...Ch. 1.1 - In Problems 2124 verify that the indicated family...Ch. 1.1 - In Problems 2124 verify that the indicated family...Ch. 1.1 - In Problems 2124 verify that the indicated family...Ch. 1.1 - In Problems 2528 use (12) to verify that the...Ch. 1.1 - In Problems 2528 use (12) to verify that the...Ch. 1.1 - In Problems 2528 use (12) to verify that the...Ch. 1.1 - Prob. 28ECh. 1.1 - Verify that the piecewise-defined function...Ch. 1.1 - In Example 7 we saw that y=1(x)=25x2 and...Ch. 1.1 - In Problems 31-34 find values of m so that the...Ch. 1.1 - In Problems 31-34 find values of m so that the...Ch. 1.1 - In Problems 31-34 find values of m so that the...Ch. 1.1 - In Problems 31-34 find values of m so that the...Ch. 1.1 - In Problems 35 and 36 find values of m so that the...Ch. 1.1 - In Problems 35 and 36 find values of m so that the...Ch. 1.1 - In Problems 3740 use the concept that y = c, x ...Ch. 1.1 - In Problems 3740 use the concept that y = c, x ...Ch. 1.1 - In Problems 3740 use the concept that y = c, x ...Ch. 1.1 - In Problems 3740 use the concept that y = c, x ...Ch. 1.1 - Prob. 41ECh. 1.1 - In Problems 41 and 42 verify that the indicated...Ch. 1.1 - Make up a differential equation that does not...Ch. 1.1 - Make up a differential equation that you feel...Ch. 1.1 - What function do you know from calculus is such...Ch. 1.1 - What function (or functions) do you know from...Ch. 1.1 - The function y = sin x is an explicit solution of...Ch. 1.1 - Discuss why it makes intuitive sense to presume...Ch. 1.1 - Prob. 49ECh. 1.1 - Prob. 50ECh. 1.1 - The graphs of members of the one-parameter family...Ch. 1.1 - Prob. 52ECh. 1.1 - Prob. 53ECh. 1.1 - Prob. 54ECh. 1.1 - Prob. 55ECh. 1.1 - Prob. 56ECh. 1.1 - The normal form (5) of an nth-order differential...Ch. 1.1 - Find a linear second-order differential equation...Ch. 1.1 - Consider the differential equation dy/dx = ex2....Ch. 1.1 - Consider the differential equation dy/dx = 5 y....Ch. 1.1 - Prob. 61ECh. 1.1 - Consider the differential equation y = y2 + 4. (a)...Ch. 1.2 - In Problems 1 and 2, y = 1/(1 + c1ex) is a...Ch. 1.2 - In Problems 1 and 2, y = 1/(1 + c1ex) is a...Ch. 1.2 - In Problems 36, y = 1/(x2 + c) is a one-parameter...Ch. 1.2 - In Problems 36, y = 1/(x2 + c) is a one-parameter...Ch. 1.2 - In Problems 36, y = 1/(x2 + c) is a one-parameter...Ch. 1.2 - In Problems 36, y = 1/(x2 + c) is a one-parameter...Ch. 1.2 - In Problems 710, x = c1 cos t + c2 sin t is a...Ch. 1.2 - In Problems 710, x = c1 cos t + c2 sin t is a...Ch. 1.2 - In Problems 710, x = c1 cos t + c2 sin t is a...Ch. 1.2 - In Problems 710, x = c1 cos t + c2 sin t is a...Ch. 1.2 - In Problems 1114, y = c1ex + c2ex is a...Ch. 1.2 - In Problems 1114, y = c1ex + c2ex is a...Ch. 1.2 - In Problems 1114, y = c1ex + c2ex is a...Ch. 1.2 - In Problems 1114, y = c1ex + c2ex is a...Ch. 1.2 - In Problems 15 and 16 determine by inspection at...Ch. 1.2 - In Problems 15 and 16 determine by inspection at...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - Prob. 20ECh. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - Prob. 22ECh. 1.2 - Prob. 23ECh. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 2528 determine whether Theorem 1.2.1...Ch. 1.2 - In Problems 2528 determine whether Theorem 1.2.1...Ch. 1.2 - Prob. 27ECh. 1.2 - In Problems 2528 determine whether Theorem 1.2.1...Ch. 1.2 - (a) By inspection find a one-parameter family of...Ch. 1.2 - (a) Verify that y = tan (x + c) is a one-parameter...Ch. 1.2 - (a) Verify that y = 1 /(x + c) is a one-parameter...Ch. 1.2 - Prob. 32ECh. 1.2 - (a) Verify that 3x2 y2 = c is a one-parameter...Ch. 1.2 - Prob. 34ECh. 1.2 - In Problems 3538 the graph of a member of a family...Ch. 1.2 - In Problems 3538 the graph of a member of a family...Ch. 1.2 - In Problems 3538 the graph of a member of a family...Ch. 1.2 - In Problems 3538 the graph of a member of a family...Ch. 1.2 - Prob. 39ECh. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - Prob. 43ECh. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - Prob. 45ECh. 1.2 - In Problems 45 and 46 use Problem 55 in Exercises...Ch. 1.2 - Consider the initial-value problem y = x 2y, y(0)...Ch. 1.2 - Show that x=0y1t3+1dt is an implicit solution of...Ch. 1.2 - Prob. 49ECh. 1.2 - Prob. 50ECh. 1.2 - Prob. 51ECh. 1.3 - Under the same assumptions that underlie the model...Ch. 1.3 - The population model given in (1) fails to take...Ch. 1.3 - Using the concept of net rate introduced in...Ch. 1.3 - Modify the model in Problem 3 for net rate at...Ch. 1.3 - A cup of coffee cools according to Newtons law of...Ch. 1.3 - The ambient temperature Tm in (3) could be a...Ch. 1.3 - Suppose a student carrying a flu virus returns to...Ch. 1.3 - At a time denoted as t = 0 a technological...Ch. 1.3 - Prob. 9ECh. 1.3 - Prob. 10ECh. 1.3 - What is the differential equation in Problem 10,...Ch. 1.3 - Prob. 12ECh. 1.3 - Suppose water is leaking from a tank through a...Ch. 1.3 - The right-circular conical tank shown in Figure...Ch. 1.3 - A series circuit contains a resistor and an...Ch. 1.3 - A series circuit contains a resistor and a...Ch. 1.3 - For high-speed motion through the airsuch as the...Ch. 1.3 - A cylindrical barrel s feet in diameter of weight...Ch. 1.3 - After a mass m is attached to a spring, it...Ch. 1.3 - In Problem 19, what is a differential equation for...Ch. 1.3 - Prob. 21ECh. 1.3 - In Problem 21, the mass m(t) is the sum of three...Ch. 1.3 - By Newtons universal law of gravitation the...Ch. 1.3 - Suppose a hole is drilled through the center of...Ch. 1.3 - Prob. 25ECh. 1.3 - Prob. 26ECh. 1.3 - Infusion of a Drug A drug is infused into a...Ch. 1.3 - Tractrix A motorboat starts at the origin and...Ch. 1.3 - Reflecting surface Assume that when the plane...Ch. 1.3 - Prob. 30ECh. 1.3 - Prob. 31ECh. 1.3 - Prob. 32ECh. 1.3 - Prob. 33ECh. 1.3 - Prob. 34ECh. 1.3 - Prob. 35ECh. 1.3 - Prob. 36ECh. 1.3 - Let It snow The snowplow problem is a classic and...Ch. 1.3 - Population Dynamics Suppose that dP/dt = 0.15 P(t)...Ch. 1.3 - Prob. 39ECh. 1.3 - Prob. 40ECh. 1 - In Problems 1 and 2 fill in the blank and then...Ch. 1 - In Problems 1 and 2 fill in the blank and then...Ch. 1 - In Problems 3 and 4 fill in the blank and then...Ch. 1 - Prob. 4RECh. 1 - Prob. 5RECh. 1 - In Problems 5 and 6 compute y and y and then...Ch. 1 - Prob. 7RECh. 1 - Prob. 8RECh. 1 - Prob. 9RECh. 1 - Prob. 10RECh. 1 - Prob. 11RECh. 1 - Prob. 12RECh. 1 - Prob. 13RECh. 1 - Prob. 14RECh. 1 - In Problems 15 and 16 interpret each statement as...Ch. 1 - Prob. 16RECh. 1 - Prob. 17RECh. 1 - (a) Verify that the one-parameter family y2 2y =...Ch. 1 - Prob. 19RECh. 1 - Suppose that y(x) denotes a solution of the...Ch. 1 - Prob. 21RECh. 1 - Prob. 22RECh. 1 - Prob. 23RECh. 1 - Prob. 24RECh. 1 - Prob. 25RECh. 1 - Prob. 26RECh. 1 - Prob. 27RECh. 1 - Prob. 28RECh. 1 - Prob. 29RECh. 1 - In Problems 2730 use (12) of Section 1.1 to verify...Ch. 1 - Prob. 31RECh. 1 - Prob. 32RECh. 1 - Prob. 33RECh. 1 - Prob. 34RECh. 1 - Prob. 35RECh. 1 - Prob. 36RECh. 1 - In Problems 3538, y = c1e3x + c2ex 2x is a...Ch. 1 - Prob. 38RECh. 1 - Prob. 39RECh. 1 - Prob. 40RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvotearrow_forward(7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz). Ꮖ (a) (4 points) Show that V x F = 0. (b) (4 points) Find a potential f for the vector field F. (c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use Stokes' Theorem to calculate the line integral Jos F.ds; as denotes the boundary of S. Explain your answer.arrow_forward(3) (16 points) Consider z = uv, u = x+y, v=x-y. (a) (4 points) Express z in the form z = fog where g: R² R² and f: R² → R. (b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate steps otherwise no credit. (c) (4 points) Let S be the surface parametrized by T(x, y) = (x, y, ƒ (g(x, y)) (x, y) = R². Give a parametric description of the tangent plane to S at the point p = T(x, y). (d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic approximation) of F = (fog) at a point (a, b). Verify that Q(x,y) F(a+x,b+y). =arrow_forward
- (6) (8 points) Change the order of integration and evaluate (z +4ry)drdy . So S√ ² 0arrow_forward(10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward
- (9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward(8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward
- (4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward(2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education

Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education

Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON


Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON

Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,

Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY