The successive half-lives and the initial concentration of a reaction is given. By using these values, the concentration of A is to be calculated for each given time. Concept introduction: The change observed in the concentration of a reactant or a product per unit time is known as the rate of the particular reaction. The differential rate law provides the rate of a reaction at specific reaction concentrations. To determine : The concentration of A at 80 .0 min .
The successive half-lives and the initial concentration of a reaction is given. By using these values, the concentration of A is to be calculated for each given time. Concept introduction: The change observed in the concentration of a reactant or a product per unit time is known as the rate of the particular reaction. The differential rate law provides the rate of a reaction at specific reaction concentrations. To determine : The concentration of A at 80 .0 min .
Solution Summary: The author explains how the differential rate law calculates the concentration of A for each given time.
Definition Definition Study of the speed of chemical reactions and other factors that affect the rate of reaction. It also extends toward the mechanism involved in the reaction.
Chapter 11, Problem 55E
(a)
Interpretation Introduction
Interpretation: The successive half-lives and the initial concentration of a reaction is given. By using these values, the concentration of
A is to be calculated for each given time.
Concept introduction: The change observed in the concentration of a reactant or a product per unit time is known as the rate of the particular reaction. The differential rate law provides the rate of a reaction at specific reaction concentrations.
To determine: The concentration of
A at
80.0min.
(b)
Interpretation Introduction
Interpretation: The successive half-lives and the initial concentration of a reaction is given. By using these values, the concentration of
A is to be calculated for each given time.
Concept introduction: The change observed in the concentration of a reactant or a product per unit time is known as the rate of the particular reaction. The differential rate law provides the rate of a reaction at specific reaction concentrations.
need help please and thanks dont understand only need help with C-F
Learning Goal:
As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT.
The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).
Part A - Difference in binding free eenergies
Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol.
The margin of error is 2%.
Part B - Compare difference in free energy to the thermal…
Please correct answer and don't used hand raiting
need help please and thanks dont understand a-b
Learning Goal:
As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT.
The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).
Part A - Difference in binding free eenergies
Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol.
The margin of error is 2%.
Part B - Compare difference in free energy to the thermal energy
Divide the…
Chapter 11 Solutions
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card