EBK ESSENTIAL UNIVERSITY PHYSICS, VOLUM
4th Edition
ISBN: 9780135272947
Author: Wolfson
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 54P
An anemometer for measuring wind speeds consists of four small cups, each with mass 124 g. mounted a pair of 32.6-cm-long rods with mass 75.7 g each, as shown in Fig. 11.16. Find the
FIGURE 11.16 Problem 52
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Three children are riding on the edge of a merry-go-round that has a mass of 105 kg and a radius of 1.50 m. The merry-go-round
is spinning at 18.0 rpm. The children have masses of 22.0, 28.0, and 33.0 kg. If the 28.0 kg child moves to the center of the
merry-go-round, what is the new angular velocity in revolutions per minute? Ignore friction, and assume that the
merry-go-round can be treated as a solid disk and the children as point masses.
Question Credit: OpenStax College Physics
19.5
final angular velocity:
rpm
Incorrect
Three children are riding on the edge of a merry-go-round that has a mass of 105 kg and a radius of 1.80 m. The merry-go-round
is spinning at 16.0 rpm. The children have masses of 22.0, 28.0, and 33.0 kg. If the 28.0 kg child moves to the center of the
merry-go-round, what is the new angular velocity in revolutions per minute? Ignore friction, and assume that the
merry-go-round can be treated as a solid disk and the children as point masses.
final angular velocity:
rpm
A 1.756-kg sphere of radius 0.31 m is rotating about an axis through its center at 24.843 rev/s with the angular velocity in the +z direction. A torque 11.573N∙m acts on the sphere about the center of the sphere in the +x direction. What is the angular acceleration, in rad2/s, of the sphere? (Isphere = 2/5 MR2)
Chapter 11 Solutions
EBK ESSENTIAL UNIVERSITY PHYSICS, VOLUM
Ch. 11.1 - Youre standing on the sidewalk watching a car go...Ch. 11.2 - The figure shows four pairs of force and radius...Ch. 11.3 - The figure shows three particles with the same...Ch. 11.4 - You step onto an initially nonrotating turntable...Ch. 11.5 - You push horizontally at right angles to the shaft...Ch. 11 - Does Earths angular velocity vector point north or...Ch. 11 - Figure 11.12 shows four forces acting on a body....Ch. 11 - You stand with your right arm extended...Ch. 11 - Whats the angle between two vectors if their dot...Ch. 11 - Why does a tetherball move faster as it winds up...
Ch. 11 - A group of polar bears is standing around the edge...Ch. 11 - Tornadoes in the northern hemisphere rotate...Ch. 11 - Does a particle moving at constant speed in a...Ch. 11 - Why is it easier to balance a basketball on your...Ch. 11 - If you increase the rotation rate of a precessing...Ch. 11 - A car is headed north at 70 km/h. Give the...Ch. 11 - If the car of Exercise 15 makes a 90 left turn...Ch. 11 - A wheel is spinning at 45 rpm with its axis...Ch. 11 - A wheel is spinning about a horizontal axis with...Ch. 11 - A 12-N force is applied at the point x = 3 m, y =...Ch. 11 - A force F=1.3i+2.7jN is applied at the point x =...Ch. 11 - When you hold your arm outstretched, its supported...Ch. 11 - Express the units of angular momentum (a) using...Ch. 11 - A gymnast of rotational inertia 62 kg m2 is...Ch. 11 - A 640-g hoop 90 cm in diameter is rotating at 170...Ch. 11 - A 7.4-cm-diameter baseball has mass 145 g and is...Ch. 11 - A potters wheel with rotational inertia 6.40 kg ...Ch. 11 - A 3.0-m-diametcr merry-go-round with rotational...Ch. 11 - A uniform, spherical cloud of interstellar gas has...Ch. 11 - A skater has rotational inertia 4.2 kg m2 with...Ch. 11 - Prob. 27ECh. 11 - Example 11.1: A 1150-kg car rounds a circular turn...Ch. 11 - Prob. 29ECh. 11 - Prob. 30ECh. 11 - Prob. 31ECh. 11 - Prob. 32ECh. 11 - Prob. 33ECh. 11 - Prob. 34ECh. 11 - You slip a wrench over a bolt. Taking the origin...Ch. 11 - Vector A points 30 counterclockwise from the...Ch. 11 - A baseball player extends his arm straight up to...Ch. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Two identical 1800-kg cars are traveling in...Ch. 11 - The dot product of two vectors is half the...Ch. 11 - Biomechanical engineers have developed...Ch. 11 - Figure 11.15 shows the dimensions of a 880-g...Ch. 11 - As an automotive engineer, youre charged with...Ch. 11 - A turntable of radius 25 cm and rotational inertia...Ch. 11 - A 17-kg dog is standing on the edge of a...Ch. 11 - A physics student is standing on an initially...Ch. 11 - Youre choreographing your schools annual ice show....Ch. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Jumbo is back! Jumbo is the 4.8-Mg elephant from...Ch. 11 - An anemometer for measuring wind speeds consists...Ch. 11 - A turntable has rotational inertia I and is...Ch. 11 - About 99.9% of the solar systems total mass lies...Ch. 11 - Youre a civil engineer for an advanced...Ch. 11 - In Fig. 11.18, the lower disk, of mass 440 g and...Ch. 11 - A solid ball of mass M and radius R is spinning...Ch. 11 - A time-dependent torque given by = a + b sin ct...Ch. 11 - Consider a rapidly spinning gyroscope whose axis...Ch. 11 - When a star like our Sun exhausts its fuel,...Ch. 11 - Pulsarsthe rapidly rotating neutron stars...Ch. 11 - Prob. 64PCh. 11 - Figure 11.22 shows a demonstration gyroscope,...Ch. 11 - Figure 11.22 shows a demonstration gyroscope,...Ch. 11 - Figure 11.22 shows a demonstration gyroscope,...Ch. 11 - Figure 11.22 shows a demonstration gyroscope,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Write electron configurations for each element. Use the symbol of the previous noble gas in brackets to represe...
Introductory Chemistry (6th Edition)
Answer the following questions for each compound: a. How many signals are in its 13C NMR spectrum? b. Which sig...
Organic Chemistry (8th Edition)
1. Define and distinguish incomplete penetrance and variable expressivity.
Genetic Analysis: An Integrated Approach (3rd Edition)
MAKE CONNECTIONS In Concept 20.2, you learned about genome-wide association studies. Explain how these studies...
Campbell Biology (11th Edition)
Johnny was vigorously exercising the only joints in the skull that are freely movable. What would you guess he ...
Anatomy & Physiology (6th Edition)
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A thin rod of length 2.65 m and mass 13.7 kg is rotated at anangular speed of 3.89 rad/s around an axis perpendicular to therod and through one of its ends. Find the magnitude of the rodsangular momentum.arrow_forwardA solid cylinder of mass 2.0 kg and radius 20 cm is rotating counterclockwise around a vertical axis through its center at 600 rev/min. A second solid cylinder of the same mass and radius is rotating clockwise around the same vertical axis at 900 rev/min. If the cylinders couple so that they rotate about the same vertical axis, what is the angular velocity of the combination?arrow_forwardThe velocity of a particle of mass m = 2.00 kg is given by v= 5.10 + 2.40 m /s. What is the angular momentumof the particle around the origin when it is located atr= 8.60 3.70 m?arrow_forward
- A thin rod of length 2.65 m and mass 13.7 kg is rotated at anangular speed of 3.89 rad/s around an axis perpendicular to therod and through its center of mass. Find the magnitude of therods angular momentum.arrow_forwardA buzzard (m = 9.29 kg) is flying in circular motion with aspeed of 8.44 m/s while viewing its meal below. If the radius ofthe buzzards circular motion is 8.00 m, what is the angularmomentum of the buzzardaround the center of its motion?arrow_forwardTwo astronauts (Fig. P10.67), each having a mass M, are connected by a rope of length d having negligible mass. They are isolated in space, orbiting their center of mass at speeds v. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the two-astronaut system and (b) the rotational energy of the system. By pulling on the rope, one of the astronauts shortens the distance between them to d/2. (c) What is the new angular momentum of the system? (d) What are the astronauts new speeds? (e) What is the new rotational energy of the system? (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope? Figure P10.67 Problems 67 and 68.arrow_forward
- A uniform disk of mass m = 10.0 kg and radius r = 34.0 cm mounted on a frictionlessaxle through its center, and initially at rest, isacted upon by two tangential forces of equalmagnitude F, acting on opposite sides of itsrim until a point on the rim experiences acentripetal acceleration of 4.00 m/s2 (Fig.P13.73). a. What is the angular momentumof the disk at this time? b. If F = 2.00 N, howlong do the forces have to be applied to thedisk to achieve this centripetal acceleration? FIGURE P13.73arrow_forwardA disk 8.00 cm in radius rotates at a constant rate of 1200 rev/min about its central axis. Determine (a) its angular speed in radians per second, (b) the tangential speed at a point 3.00 cm from its center, (c) the radial acceleration of a point on the rim, and (d) the total distance a point on the rim moves in 2.00 s.arrow_forwardTwo astronauts (Fig. P10.67), each having a mass of 75.0 kg, are connected by a 10.0-m rope of negligible mass. They are isolated in space, orbiting their center of mass at speeds of 5.00 m/s. Treating the astronauts as particles, calculate (a) the magnitude of the angular momentum of the two-astronaut system and (b) the rotational energy of the system. By pulling on the rope, one astronaut shortens the distance between them to 5.00 m. (c) What is the new angular momentum of the system? (d) What are the astronauts new speeds? (e) What is the new rotational energy of the system? (f) How much chemical potential energy in the body of the astronaut was converted to mechanical energy in the system when he shortened the rope? Figure P10.67 Problems 67 and 68.arrow_forward
- A space station is coast me ted in the shape of a hollow ring of mass 5.00 104 kg. Members of the crew walk on a deck formed by the inner surface of the outer cylindrical wall of the ring, with radius r = 100 m. At rest when constructed, the ring is set rotating about its axis so that the people inside experience an effective free-fall acceleration equal to g. (Sec Fig. P11.29.) The rotation is achieved by firing two small rockets attached tangentially to opposite points on the rim of the ring, (a) What angular momentum does the space station acquirer (b) For what time interval must the rockets be fired if each exerts a thrust of 125 N?arrow_forwardA student sits on a freely rotating stool holding two dumbbells, each of mass 3.00 kg (Fig. P10.56). When his arms are extended horizontally (Fig. P10.56a), the dumbbells are 1.00 m from the axis of rotation and the student rotates with an angular speed of 0.750 rad/s. The moment of inertia of the student plus stool is 3.00 kg m2 and is assumed to be constant. The student pulls the dumbbells inward horizontally to a position 0.300 m from the rotation axis (Fig. P10.56b). (a) Find the new angular speed of the student. (b) Find the kinetic energy of the rotating system before and after he pulls the dumbbells inward. Figure P10.56arrow_forwardA system consists of a disk of mass 2.0 kg and radius 50 cm upon which is mounted an annular cylinder of mass 1.0 kg with inner radius 20 cm and outer radius 30 cm (see below). The system rotates about an axis through the center of the disk and annular cylinder at 10 rev/s. (a) What is the moment of inertia of the system? (b) What is its rotational kinetic energy?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License