Bundle: Inquiry into Physics, Loose-Leaf Version, 8th + WebAssign Printed Access Card for Ostdiek/Bord's Inquiry into Physics, 8th Edition, Single-Term
bartleby

Concept explainers

Question
Book Icon
Chapter 11, Problem 4C
To determine

(a)

The size of aluminum-27 and compare it with the size of first Bohr orbit in hydrogen atom.

Expert Solution
Check Mark

Answer to Problem 4C

The size of aluminum-27 is compare it with the size of first Bohr orbit in hydrogen atom.

Explanation of Solution

Given info:

  • The size of first Bohr orbit in hydrogen atom is 5.29×1011m.
  • The Empirical formula is given to find the size of isotope.

Formula used:

Formula to find the size of isotope using formula of radius is,

V=43πr3V=43×3.14×(1.2×1015×A13)3V=7.238×1045×A

Here, A is the atomic mass, V is the volume of nucleus.

Calculation:

Substitute the given values to find the size of aluminum-27.

V=7.238×1045×39.96238=2.892×1043m3

Finding the size of first Bohr orbit:

V'=43πr'3V=43×3.14×(5.29×1011m)3V=6.2×1031m3

The size of first Bohr orbit in hydrogen atom is 3.175×1012 times more than the size of aluminum-27.

Conclusion:

Thus, the size of first Bohr orbit in hydrogen atom is 3.175×1012 times more than the size of aluminum-27.

To determine

(c)

To find the size of copper-63 and compare it with the size of first Bohr orbit in hydrogen atom.

Expert Solution
Check Mark

Answer to Problem 4C

The size of copper-63 is compare it with the size of first Bohr orbit in hydrogen atom.

Explanation of Solution

Given info:

  • The size of first Bohr orbit in hydrogen atom is 5.29×1011m.
  • The Empirical formula is given to find the size of isotope.

Formula used:

Formula to find the size of isotope using formula of radius is,

V=43πr3V=43×3.14×(1.2×1015×A13)3V=7.238×1045×A

Here,

A is the atomic mass, V is the volume of nucleus.

Calculation:

Substitute the given values to find the size of copper-63.

V=7.238×1045×62.92959=4.55×1043m3

Finding the size of first Bohr orbit:

V'=43πr'3V=43×3.14×(5.29×1011m)3V=6.2×1031m3

The size of first Bohr orbit in hydrogen atom is 1.36×1012 times more than the size of argon-40.

Conclusion:

Thus, the size of first Bohr orbit in hydrogen atom is 2.1435×1012 times more than the size of copper-63.

To determine

(d)

To find the size of cesium-134 and compare it with the size of first Bohr orbit in hydrogen atom.

Expert Solution
Check Mark

Answer to Problem 4C

The size of cesium-134 is compare it with the size of first Bohr orbit in hydrogen atom.

Explanation of Solution

Given info:

  • The size of first Bohr orbit in hydrogen atom is 5.29×1011m.
  • The Empirical formula is given to find the size of isotope.

Formula used:

Formula to find the size of isotope using formula of radius is,

V=43πr3V=43×3.14×(1.2×1015×A13)3V=7.238×1045×A

Here, A is the atomic mass, V is the volume of nucleus.

Calculation:

Substitute the given values to find the size of cesium-134.

V=7.238×1045×133.9067=9.691×1043m3

Finding the size of first Bohr orbit:

V'=43πr'3V=43×3.14×(5.29×1011m)3V=6.2×1031m3

The size of first Bohr orbit in hydrogen atom is 6.4×1011 times more than the size of cesium-134.

Conclusion:

Thus, the size of first Bohr orbit in hydrogen atom is 6.4×1011 times more than the size of cesium-134.

To determine

(d)

The size of bismuth-211 and compare it with the size of first Bohr orbit in hydrogen atom.

Expert Solution
Check Mark

Answer to Problem 4C

The size of bismuth-211 is compare it with the size of first Bohr orbit in hydrogen atom.

Explanation of Solution

Given info:

  • The size of first Bohr orbit in hydrogen atom is 5.29×1011m
  • The Empirical formula is given to find the size of isotope.

Formula used:

Formula to find the size of isotope using formula of radius is,

V=43πr3V=43×3.14×(1.2×1015×A13)3V=7.238×1045×A

Here, A is the atomic mass, V is the volume of nucleus.

Calculation:

Substitute the given values to find the size of bismuth-211.

V=7.238×1045×210.98726=1.527×1042m3

Finding the size of first Bohr orbit:

V'=43πr'3V=43×3.14×(5.29×1011m)3V=6.2×1031m3

The size of first Bohr orbit in hydrogen atom is 4.06×1011 times more than the size of bismuth-211.

Conclusion:

Thus, the size of first Bohr orbit in hydrogen atom is 4.06×1011 times more than the size of bismuth-211.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Problem 04.08 (17 points). Answer the following questions related to the figure below. ථි R₁ www R₂ E R₁ www ли R₁ A Use Kirchhoff's laws to calculate the currents through each battery and resistor in terms of R1, R2, E1, & E2. B Given that all the resistances and EMFs have positive values, if E₁ > E2 and R₁ > R2, which direction is the current flowing through E₁? Through R₂? C If E1 E2 and R₁ > R2, which direction is the current flowing through E₁? Through R2?
A 105- and a 45.0-Q resistor are connected in parallel. When this combination is connected across a battery, the current delivered by the battery is 0.268 A. When the 45.0-resistor is disconnected, the current from the battery drops to 0.0840 A. Determine (a) the emf and (b) the internal resistance of the battery. 10 R2 R₁ ww R₁ Emf 14 Emf Final circuit Initial circuit
A ball is shot at an angle of 60° with the ground. What should be the initial velocity of the ball so that it will go inside the ring 8 meters away and 3 meters high. Suppose that you want the ball to be scored exactly at the buzzer, determine the required time to throw and shoot the ball. Full solution and figure if there is.

Chapter 11 Solutions

Bundle: Inquiry into Physics, Loose-Leaf Version, 8th + WebAssign Printed Access Card for Ostdiek/Bord's Inquiry into Physics, 8th Edition, Single-Term

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Intro Spectroscopy
Physics
ISBN:9781305221796
Author:PAVIA
Publisher:Cengage
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning