Concept explainers
The human RefSeq of the entire first exon of a gene involved in Brugada syndrome (a cardiac disorder characterized by an abnormal electrocardiogram and an increased risk of sudden heart failure) is: 5′ CAACGCTTAGGATGTGCGGAGCCT 3′ The genomic DNA of four people (1–4), three of whom have the disorder, was subjected to single-molecule sequencing. The following sequences represent all those obtained from each person.
a. | The first exon of the RefSeq copy of this gene includes the start codon. Write as much of the amino acid sequence of the encoded protein as possible, indicating the N-to-C polarity. |
b. | Are any of these individuals homozygotes? If so, which person and what allele? |
c. | Is the inheritance of Brugada syndrome among these individuals dominant or recessive? |
d. | Is Brugada syndrome associated with allelic heterogeneity? |
e. | Are any of these individuals compound heterozygotes? |
f. | Do the data show any evidence for locus heterogeneity? |
g. | Which person has normal heart function? |
h. | For each variant from the RefSeq, describe: (i) what the mutation does to the coding sequence; and (ii) whether the variation is a loss-of-function allele, a gain-of-function allele, or a wild-type allele. |
i. | For each variant, indicate which of the following terms apply: null, hypomorphic, hypermorphic, nonsense, frameshift, missense, silent, SNP, DIP, SSR, anonymous. |
j. | Is the function of this gene haploinsufficient? Explain. |
![Check Mark](/static/check-mark.png)
a.
To determine:
The amino acid sequence for the RefSeq obtained from individual 1.
Introduction:
The mutation is the change in the nucleotide sequence of the gene, which results in either the formation of a defective protein or no protein at all. The mutation can also alter the regulation of certain genes leading to their hyperactivity or hypoactivity. It is different from recombination where gametes from parents are interchanged to produce new zygotes.
Explanation of Solution
The amino acid sequence for the RefSeq data 5' CAACGCTTAGGATGTGCGGAGCCT 3' will be N-glutamine-arginine-leucine-glycine-cysteine-alanine-glutamic acid-proline-C. The amino acid sequence for 5' CAACGCTTAGGATGTGCGGAGACT 3' is N-glutamine-arginine-leucine-glycine-cysteine-alanine-glutamic acid-threonine-C. The amino acid makes up large polypeptide chains that fold into functional proteins and perform different activities in the body of living organisms.
![Check Mark](/static/check-mark.png)
b.
To determine:
The presence of the homozygous individual.
Introduction:
The genes are the sequence of nucleotides that are present on the chromosomes and encode for a specific protein that plays a crucial role in the functioning of the different processes in an organism. The gene is located at specific gene loci and can be structural or regulatory in nature.
Explanation of Solution
The individual 2 is homozygous as the two strands of genetic material in the individual is same, and for all other individuals, the composition of nucleotides on both the strands is different. So, they are not homozygous for the given trait. The individual 2 has a nucleotide sequence 5' CAACGCTTAGGATGTGAGGAGCCT 3'. It implies that both the strands have similar nucleotide sequence. However, the homozygous allele cannot be predicted through the nucleotide sequence of the individual.
![Check Mark](/static/check-mark.png)
c.
To determine:
The inheritance pattern of Brugada syndrome among individuals.
Introduction:
The proteins are made of amino acids. The amino acids are of 20 types that combine in a varied manner to form proteins. The amino acids join together by peptide bonds. Proteins act as major substrates and reactants for the metabolic pathways. All the enzymes in the body that are crucial for the biochemical reactions are proteins.
Explanation of Solution
The inheritance of the disease, Brugada syndrome, is dominant as the disease develops by the inheritance of particular nucleotide sequence 5′ CAACGCTTAGGATGTGCGGAGCCT 3′ that is inherited by three organisms and has very little variation in the sequence structure due to mutation. The sequence is present in individual 1, 3, and 4, and accounts for the development of the disease when only one strand of the exon contains the sequence. So, implying that one copy is enough to cause the disease and therefore, the inheritance of the Brugada syndrome is dominant.
![Check Mark](/static/check-mark.png)
d.
To determine:
The association of Brugada syndrome with allelic heterogeneity.
Introduction:
The cardiovascular system is made of different components. The heart constitutes the primary organs of the system, and the arteries, veins, and blood capillaries form the associated structures of the cardiovascular system.
Explanation of Solution
Brugada syndrome is associated with allelic heterogeneity as the presence of only one copy of the sequence or allele in the exon can lead to the development of the disease. It implies that the disease can occur in heterozygous condition, where only one copy of allele is enough to cause disease. Hence, it can be concluded that Brugada syndrome is associated with allelic heterogeneity.
![Check Mark](/static/check-mark.png)
e.
To determine:
The presence of compound heterozygotes among individuals.
Introduction:
A genetic disorder is an alteration in the genetic composition of the individual for one or more genes that are manifested in the form of altered protein sequence for that particular trait. The genetic disorder is phenotypically manifested in various forms of abnormalities and malfunctions.
Explanation of Solution
Compound heterozygotes are the individuals who have two different mutations occurring in the two alleles of an individual. None of the individuals are compound heterozygotes, as only one of the copies of exon/allele is affected by mutation at a given time. The presence of only one mutation in one of the allele is a heterozygous condition. Hence, individuals 1, 3, and 4 are heterozygous, but not compound heterozygous.
![Check Mark](/static/check-mark.png)
f.
To determine:
The presence of locus heterogeneity among individuals.
Introduction:
The human consists of 23 pairs of chromosomes, condensed form of chromatids which divide during cell division into daughter cells. The human has 22 autosomes and one pair of sex chromosomes. The sex chromosomes determine the sex in an individual based on the type of sex chromosomes that are present in the fusing gametes.
Explanation of Solution
Locus heterogeneity is the condition where two different kinds of mutation occur at a different locus in the same chromosomes. None of the individuals has locus heterogeneity as all the individuals have only one mutation at one site or locus in the chromosome. Hence, none of the individuals shows locus heterogeneity.
![Check Mark](/static/check-mark.png)
g.
To determine:
The individual with normal heart function.
Introduction:
The chromosomes are condensed structures that are formed during the early phases of cell division from the loose network of chromatin thread and then regain their original structure after being divided into daughter cells.
Explanation of Solution
The individual who does not have the Brugada syndrome is individual 2, as the nucleotide sequence of the individual varies from the person who is positive for the cardiac disorder. The individual has changed single nucleotide in both the alleles and is therefore homozygous in nature. The difference in the nucleotide sequence in both the alleles accounts for normal heart function in individual 2.
![Check Mark](/static/check-mark.png)
h.
To determine:
The effect of the mutation on the coding sequence.
Introduction:
Fertilization is the process by which the male gamete, sperm, fertilize with the female gamete, ovary. The process brings about the fusion of two haploid pronuclei into a diploid zygote.
Explanation of Solution
The changes occurred due to a mutation in coding sequence are that in individual 1 there is a change in amino acid sequence as the amino acid proline is changed to threonine. In individual 2, the change in amino acid sequence occurs from alanine to glutamine. In individual 3, there is a change of amino acid sequence cysteine to alanine, and in individual 4, the amino acid changes from alanine to valine. The effect of this mutation as loss-of-function or gain-of-function can be done by protein expression analysis. The three individuals are not wild type due to the presence of the mutation.
![Check Mark](/static/check-mark.png)
i.
To determine:
The type of mutation in the sequence.
Introduction:
There are a vast number of cardiovascular problems that can arise due to malformation in the heart or the dysfunction of some parts of the cardiovascular system. Some of these disorders are fibrillation, septal defects, and so on.
Explanation of Solution
The mutation in all the individuals is single nucleotide polymorphisms (SNPs) as there is a change only in one nucleotide and not the entire codon. The presence of silent, missense, or nonsense mutation can only be done with the help of protein expression analysis through techniques like microarray and so on.
![Check Mark](/static/check-mark.png)
j.
To determine:
The presence of gene haploinsufficiency in the function.
Introduction:
The circulatory system and cardiovascular systems form the two very important different organ systems in the body. The system is responsible for pumping the blood carrying nutrients and oxygen and helping to remove waste products from the body.
Explanation of Solution
Gene haploinsufficiency is the condition in which normal phenotype needs the protein to encode by both the alleles, and there is a reduction in the function by 50% if any one of the alleles has the abnormal phenotype. The presence of a mutation in the genome of all the individual increases the probability of gene haploinsufficiency. The change in the phenotype of the alleles of the exon due to mutation can account for gene haploinsufficiency in the individuals.
Want to see more full solutions like this?
Chapter 11 Solutions
ND STONY BROOK UNIVERSITY LOOSELEAF GENETICS: FROM GENES TO GENOMES
- What are some external influences that keep people from making healthy eating decisions?arrow_forwardWhat type of structure(s) would you expect to see in peripheral membrane proteins? (mark all that apply) A. Amphipathic alpha helix (one side is hydrophilic and one side is hydrophobic) B. A hydrophobic beta barrel C. A hydrophobic alpha helix D. A chemical group attached to the protein that can anchor it to the membranearrow_forwardTemporal flexibility (the ability to change over time) of actin structures within a cell is maintained by… A. The growth/shrinkage cycle B. Periodic catastrophe C. GTP hydrolysis D. Treadmilling E. None of the abovearrow_forward
- During in vitro polymerization of actin and microtubule filaments from their subunits, what causes the initial delay in filament growth? A.Nucleation B.Reaching homeostasis C.Nucleotide exchange D.ATP or GTP hydrolysis E.Treadmillingarrow_forwardYou expect to find which of the following in the Microtubule Organizing Center (MTOC)...(mark all that apply) A. Gamma tubulin B. XMAP215 C. Centrioles D. Kinesin-13arrow_forwardThe actin-nucleating protein formin has flexible “arms” containing binding sites that help recruit subunits in order to enhance microfilament polymerization. What protein binds these sites? A.Thymosin B.Profilin C.Cofilin D.Actin E.Tropomodulinarrow_forward
- While investigating an unidentified motor protein, you discover that it has two heads that bind to actin. Based on this information, you could confidently determine that it is NOT... (mark all that apply) A. A myosin I motor B. A dynein motor C. A myosin VI motor D. A kinesin motorarrow_forwardYou isolate the plasma membrane of cells and find that . . . A. it contains regions with different lipid compositions B. it has different lipid types on the outer and cytosolic leaflets of the membrane C. neither are possible D. A and B both occurarrow_forwardYou are studying the mobility of a transmembrane protein that contains extracellular domains, one transmembrane domain, and a large cytosolic domain. Under normal conditions, this protein is confined to a particular region of the membrane due to the cortical actin cytoskeletal network. Which of the following changes is most likely to increase mobility of this protein beyond the normal restricted region of the membrane? A. Increased temperature B. Protease cleavage of the extracellular domain of the protein C. Binding to a free-floating extracellular ligand, such as a hormone D. Protease cleavage of the cytosolic domain of the protein E. Aggregation of the protein with other transmembrane proteinsarrow_forward
- Topic: Benthic invertebrates as an indicator species for climate change, mapping changes in ecosystems (Historical Analysis & GIS) What objects or events has the team chosen to analyze? How does your team wish to delineate the domain or scale in which these objects or events operate? How does that limited domain facilitate a more feasible research project? What is your understanding of their relationships to other objects and events? Are you excluding other things from consideration which may influence the phenomena you seek to understand? Examples of such exclusions might include certain air-born pollutants; a general class of water bodies near Ottawa, or measurements recorded at other months of the year; interview participants from other organizations that are involved in the development of your central topic or issue. In what ways do your research questions follow as the most appropriate and/or most practical questions (given the circumstances) to pursue to better understand…arrow_forwardThe Esp gene encodes a protein that alters the structure of the insulin receptor on osteoblasts and interferes with the binding of insulin to the receptor. A researcher created a group of osteoblasts with an Esp mutation that prevented the production of a functional Esp product (mutant). The researcher then exposed the mutant strain and a normal strain that expresses Esp to glucose and compared the levels of insulin in the blood near the osteoblasts (Figure 2). Which of the following claims is most consistent with the data shown in Figure 2 ? A Esp expression is necessary to prevent the overproduction of insulin. B Esp protein does not regulate blood-sarrow_forwardPredict the per capita rate of change (r) for a population of ruil trees in the presence of the novel symbiont when the soil moisture is 29%. The formula I am given is y= -0.00012x^2 + 0.0088x -0.1372. Do I use this formula and plug in 29 for each x variable?arrow_forward
- Biology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxHuman Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage Learning
- Case Studies In Health Information ManagementBiologyISBN:9781337676908Author:SCHNERINGPublisher:CengageConcepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax College
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305389892/9781305389892_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781947172517/9781947172517_coverImage_Textbooks.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305251052/9781305251052_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168116/9781938168116_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305967359/9781305967359_smallCoverImage.gif)