
Concept explainers
Native people throughout North and South America used a bola to hunt for birds and animals. A bola can consist of three stones, each with mass m, at the ends of three light cords, each with length ℓ. The other ends of the cords are tied together to form a Y. The hunter holds one stone and swings the other two above his head (Figure P11.41a, page 308). Both these stones move together in a horizontal circle of radius 2ℓ with speed v0. At a moment when the horizontal component of their velocity is directed toward the quarry, the hunter releases the stone in his hand. As the bola flies through the air, the cords quickly take a stable arrangement with constant 120-degree angles between them (Fig. P11.41b). In the vertical direction, the bola is in free fall. Gravitational forces exerted by the Earth make the junction of the cords move with the downward acceleration
Figure P11.41
(a)

The magnitude of momentum of the bola at the moment of release and after the release.
Answer to Problem 41AP
The magnitude of momentum of the bola at the moment of release and after the release is
Explanation of Solution
At the moment of release, two stones are moving with speed
The total momentum of the is system is written as,
The total momentum has magnitude of
Conclusion:
Therefore, the magnitude of momentum of the bola at the moment of release and after the release is
(b)

The horizontal speed of the centre of mass of the bola.
Answer to Problem 41AP
The horizontal speed of the centre of mass of the bola is
Explanation of Solution
The centre of mass speed relative to the hunter is,
Mass of each stone is
Substitute
Conclusion:
Therefore, the horizontal speed of the centre of mass of the bola is
(c)

The angular momentum of the bola about its centre of mass.
Answer to Problem 41AP
The angular momentum of the bola about its centre of mass is
Explanation of Solution
The mass of each stone is
When the bola is first released, the stones are horizontally in line with two at distance
The centre of mass is given as,
This distance from the centre is not closer to the two stones: the one stone just being released at distance
The relative speed of the two stones is calculated as,
The relative speed of first stone with respect to centre of mass is given as,
The angular speed of stone 1 is,
Substitute
The angular speed of other two stones is,
Substitute
The angular speed of other two stones is equal to the angular speed of stone 1.
The total angular momentum is,
Substitute
Conclusion:
Therefore, the angular momentum of the bola about its centre of mass is
(d)

The angular speed of the bola about its centre of mass after it has settled into its Y shape.
Answer to Problem 41AP
The angular speed of the bola about its centre of mass after it has settled into its Y shape is
Explanation of Solution
As the calculation of part (c), the angular speed
The angular momentum is given as,
Rearrange the above expression for
Conclusion:
Therefore, the angular speed of the bola about its centre of mass after it has settled into its Y shape is
(e)

The kinetic energy of the bola at the instant of release.
Answer to Problem 41AP
The kinetic energy of the bola at the instant of release is
Explanation of Solution
The formula to calculate kinetic energy of the system is,
Conclusion:
Therefore, the kinetic energy of the bola at the instant of release is
(f)

The kinetic energy of the bola in its stable Y shape.
Answer to Problem 41AP
The kinetic energy of the bola in its stable Y shape is
Explanation of Solution
The formula to calculate kinetic energy of the system is,
Substitute
Conclusion:
Therefore, the kinetic energy of the bola in its stable Y shape is
(g)

The application of the conservation laws to the bola as its configuration changes.
Answer to Problem 41AP
The conservation laws are applied to the bola as it transforms its mechanical energy in to the internal energy to come in the stable state.
Explanation of Solution
The conservation laws states that the certain physical properties do not change in the course of time within an isolated physical system. There is no horizontal force act on the bola from the outside after release, so the horizontal momentum stays constant. Its center of mass moves steadily with the horizontal velocity it had at release.
No torques about its axis of rotation act on the bola, so its spin angular momentum stays constant. Internal forces cannot affect momentum conservation and angular momentum conservation, but they can affect mechanical energy. The cords pull on the stones as the stones rearrange themselves, so the cords must stretch slightly, so that energy
Conclusion:
Therefore, the conservation laws are applied to the bola as it transforms its mechanical energy in to the internal energy to come in the stable state
Want to see more full solutions like this?
Chapter 11 Solutions
Physics for Scientists and Engineers, Volume 2
- Frictionless surfarrow_forward71. A 2.1-kg mass is connected to a spring with spring constant 72 k = 150 N/m and unstretched length 18 cm. The two are mounted on a frictionless air table, with the free end of the spring attached to a frictionless pivot. The mass is set into circular mo- tion at 1.4 m/s. Find the radius of its path. cor moving at 77 km/h negotiat CH —what's the minimum icient of frictioarrow_forward12. Two forces act on a 3.1-kg mass that undergoes acceleration = 0.91 0.27 m/s². If one force is -1.2î – 2.5ĵ N, what's the other?arrow_forward
- 36. Example 5.7: You whirl a bucket of water around in a vertical circle of radius 1.22 m. What minimum speed at the top of the circle will keep the water in the bucket?arrow_forwardPassage Problems Laptop computers are equipped with accelerometers that sense when the device is dropped and then put the hard drive into a protective mode. Your computer geek friend has written a program that reads the accel- erometer and calculates the laptop's apparent weight. You're amusing yourself with this program on a long plane flight. Your laptop weighs just 5 pounds, and for a long time that's what the program reports. But then the "Fasten Seatbelt" light comes on as the plane encounters turbu- lence. Figure 4.27 shows the readings for the laptop's apparent weight over a 12-second interval that includes the start of the turbulence. 76. At the first sign of turbulence, the plane's acceleration a. is upward. b. is downward. c. is impossible to tell from the graph. 77. The plane's vertical ac- celeration has its greatest magnitude a. during interval B. b. during interval C. c. during interval D. 78. During interval C, you can conclude for certain that the plane is Apparent…arrow_forwardIf the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each otherarrow_forward
- If the metal sphere on the Van de Graff has a charge of 0.14 Coulombs and the person has a mass of 62 kg, how much excess charge would the person need in order to levitate at a distance 25 cm from the center of the charged metal sphere? Assume you can treat both the person and the metal sphere as point charges a distance 25 cm from each other (so that you can use Coulomb's Law to calculate the electrical force).arrow_forwardUsing Coulomb's Law, calculate the magnitude of the electrical force between two protons located 1 meter apart from each other. (Give your answer as the number of Newtons but as usual you only need to include the number, not the unit label.)arrow_forwardPart A You want to get an idea of the magnitude of magnetic fields produced by overhead power lines. You estimate that a transmission wire is about 12 m above the ground. The local power company tells you that the line operates at 12 kV and provide a maximum of 60 MW to the local area. Estimate the maximum magnetic field you might experience walking under such a power line, and compare to the Earth's field. [For an ac current, values are rms, and the magnetic field will be changing.] Express your answer using two significant figures. ΟΤΕ ΑΣΦ VAΣ Bmax= Submit Request Answer Part B Compare to the Earth's field of 5.0 x 10-5 T. Express your answer using two significant figures. Ο ΑΣΦ B BEarth ? ? Tarrow_forward
- Ho propel 9-kN t. Boat 27. An elevator accelerates downward at 2.4 m/s². What force does the elevator's floor exert on a 52-kg passenger?arrow_forward16. 17 A CUIN Starting from rest and undergoing constant acceleration, a 940-kg racing car covers 400 m in 4.95 s. Find the force on the car.arrow_forward----- vertical diste Section 4.6 Newton's Third Law 31. What upward gravitational force does a 5600-kg elephant exert on Earth?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





