
Pearson eText for College Physics: Explore and Apply -- Instant Access (Pearson+)
2nd Edition
ISBN: 9780137443000
Author: Eugenia Etkina, Gorazd Planinsic
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 40P
* Supersonic jet The sound intensity 5 km from the place where a supersonic jet takes off is
Determine the area of a sound collector you would need to run a 40-W lightbulb from the energy collected. What might require you to create a larger collector?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
simple diagram to illustrate the setup for each law- coulombs law and biot savart law
A circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.
An L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.
Chapter 11 Solutions
Pearson eText for College Physics: Explore and Apply -- Instant Access (Pearson+)
Ch. 11 - How do you produce a longitudinal wave on a...Ch. 11 - Compare and contrast the speed of a vibrating...Ch. 11 - Prob. 3RQCh. 11 - Prob. 4RQCh. 11 - Why is it impossible to create a traveling wave on...Ch. 11 - Your friend says that it is impossible for two...Ch. 11 - Is the following sentence true? When two...Ch. 11 - One end of a horizontal string of length L passes...Ch. 11 - When we studied traveling waves, we decided that...Ch. 11 - An ambulance siren blares continuously as the...
Ch. 11 - What does it mean if the speed of a wave is 300 m...Ch. 11 - 2. What does it mean if the wavelength of a wave...Ch. 11 - 3. If you wish to represent one period of a wave...Ch. 11 - 4. If you wish to graph the disturbance pattern of...Ch. 11 - Which mathematical expression represents a...Ch. 11 - Prob. 6MCQCh. 11 - Prob. 7MCQCh. 11 - 8. Figure Q11.8 shows the...Ch. 11 - Prob. 9MCQCh. 11 - Prob. 10CQCh. 11 - 11. Figure Q11.11 shows a snapshot of two pulses...Ch. 11 - 12. Can a wave have a period of 2.0 s, a speed of...Ch. 11 - 13. What physics ideas were necessary to construct...Ch. 11 - 14. How do you know that the wavelength of a wave...Ch. 11 - What conditions are necessary to create a...Ch. 11 - Invent and describe an experiment to estimate the...Ch. 11 - Prob. 17CQCh. 11 - 18. Describe two useful types of information a...Ch. 11 - 19. Two speakers hang from racks placed in an open...Ch. 11 - Two identical sound waves are sent down a long...Ch. 11 - Sound waves of all frequencies in the audio...Ch. 11 - How can you show that an object producing sound...Ch. 11 - Describe the common features and differences...Ch. 11 - 24. Why do different guitar strings sound...Ch. 11 - Assume that the speed of sound in air is 340 m/s...Ch. 11 - Assume that the speed of sound in air is 340 m/s...Ch. 11 - Assume that the speed of sound in air is 340 m/s...Ch. 11 - Assume that the speed of sound in air is 340 m/s...Ch. 11 - Assume that the speed of sound in air is 340 m/s...Ch. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Assume that the speed of sound in air is 340 m/s...Ch. 11 - Assume that the speed of sound in air is 340 m/s...Ch. 11 - Assume that the speed of sound in air is 340 m/s...Ch. 11 - Prob. 14PCh. 11 - Telephone line A telephone lineman is told to...Ch. 11 - 16. * A pulse travels at speed v on a stretched...Ch. 11 - 17. A 0.62-kg Slinky has 185 coils. When you and...Ch. 11 - =100g/m and the middle section is made from rope...Ch. 11 - Show using a sketch and mathematics that the...Ch. 11 - Show using a sketch and mathematics that the...Ch. 11 - 22. * You are standing at position A and your...Ch. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 26PCh. 11 - 27. Sound wave in Earth A sound wave created by an...Ch. 11 - A 5.0-kg rope that is 20 m long is woven to an...Ch. 11 - Prob. 29PCh. 11 - Repeat the previous problem for the case where the...Ch. 11 - Prob. 31PCh. 11 - 32. Two waves shown in Figure P11.32 at zero...Ch. 11 - Prob. 33PCh. 11 - 34. * Use Huygens' principle and a wave front...Ch. 11 - Prob. 35PCh. 11 - 36. * You have two synchronously vibrating objects...Ch. 11 - Design Describe an experiment to convince a friend...Ch. 11 - 38. The energy of a sound wave is proportional to...Ch. 11 - Prob. 39PCh. 11 - * Supersonic jet The sound intensity 5 km from the...Ch. 11 - * You are in an open field investigating how sound...Ch. 11 - One loudspeaker is producing a tone of frequency...Ch. 11 - 43. * Tovi is playing a flute and Dawn is playing...Ch. 11 - Music in music a very soft sound called...Ch. 11 - 45. Two sounds differ by 1 dB. What is the...Ch. 11 - 46. Calculate the change in intensity level when a...Ch. 11 - Prob. 47PCh. 11 - 48. Banjo fret How far from the end of the banjo...Ch. 11 - * Violin string A 0.33-m-long violin string has a...Ch. 11 - A person secures a 5.0-m-long rope of mass 0.40 kg...Ch. 11 - 51. * Laura and Elana are discussing how to solve...Ch. 11 - Prob. 52PCh. 11 - * Ratio reasoning By what percent does the...Ch. 11 - Prob. 54PCh. 11 - 55. * Brooklyn-Battery Tunnel The 2779-m...Ch. 11 - * Flute A wooden flute, open at both ends, is 0.48...Ch. 11 - Organ pipe The lowest three standing wave...Ch. 11 - The speed of sound can be measured using the...Ch. 11 - Prob. 59PCh. 11 - 60. * A rope of length L is attached to a...Ch. 11 - 61. * A 3.0-m-long rope with a mass of 100 g is...Ch. 11 - * A 1.2-m-long open-closed pipe is producing sound...Ch. 11 - * Figure P11.63 shows the spectrum of sound that...Ch. 11 - Prob. 64PCh. 11 - * See the spectrum in Figure P11.63. (a) Can this...Ch. 11 - Car horn A car horn vibrates at a frequency of 250...Ch. 11 - Train whistle A car drives at a speed of 25 m/s...Ch. 11 - 68. * BIO Speed of blood A source of ultrasound...Ch. 11 - 69. * Circular motion sound source A whistle with...Ch. 11 - BIO Bat echo A bat emits short pulses of sound at...Ch. 11 - 105 Hz emits sound waves and detects the same...Ch. 11 - * Violin strings The speed of a wave on a violin A...Ch. 11 - 73. * Use Huygens' principle and a wave front...Ch. 11 - Prob. 74GPCh. 11 - Prob. 75GPCh. 11 - s teammate shouts at her to catch a ball. Estimate...Ch. 11 - 77. ** EST While camping, you record a thunderclap...Ch. 11 - 78. ** BIO Blood speed A red blood cell travels at...Ch. 11 - Prob. 80RPPCh. 11 - 81. If the car from Problem 11.80 is moving at 20...Ch. 11 - 82. Which answer below is closest to the distance...Ch. 11 - Compare your answers to Problems 11.80 and 11.82....Ch. 11 - While your car from Problem 11.80 is stationary,...Ch. 11 - Prob. 85RPPCh. 11 - Prob. 86RPPCh. 11 - 87. What amplifies the air pressure in the ear?
a....Ch. 11 - Where is the mechanism that allows the ear to...Ch. 11 - Prob. 89RPPCh. 11 - The threshold for pressure variation of a barely...
Additional Science Textbook Solutions
Find more solutions based on key concepts
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
Body, Heal Thyself The precision of mitotic cell division is essential for repairing damaged tissues like those...
Biology: Life on Earth with Physiology (11th Edition)
29. For the reaction
determine the expression for the rate of the reaction in terms of the change in concentr...
Chemistry: Structure and Properties (2nd Edition)
Modified True/False 3. __________ Aquatic microorganisms are more prevalent near the surface than at the bottom...
Microbiology with Diseases by Body System (5th Edition)
Draw the structure of the monomer or monomers used to synthesize the following polymers, and indicate whether e...
Organic Chemistry (8th Edition)
How can the freezing of water crack boulders?
Campbell Biology in Focus (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
- Calculate the center of mass of the hollow cone shown below. Clearly specify the origin and the coordinate system you are using. Z r Y h Xarrow_forward12. If all three collisions in the figure below are totally inelastic, which will cause more damage? (think about which collision has a larger amount of kinetic energy dissipated/lost to the environment? I m II III A. I B. II C. III m m v brick wall ע ע 0.5v 2v 0.5m D. I and II E. II and III F. I and III G. I, II and III (all of them) 2marrow_forwardCan you solve this 2 question teach me step by step and draw for mearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY