College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 11, Problem 3P
A 75-kg sprinter accelerates from rest to a speed of 11.0 m/s in 5.0 s. (a) Calculate the mechanical work done by the sprinter during this time. (b) Calculate the average power the sprinter must generate. (c) If the sprinter converts food energy to mechanical energy with an efficiency of 25%, at what average rate is he burning Calories? (d) What happens to the other 75% of the food energy being used?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
As a gasoline engine is running, an amount of gasoline containing 16,000 J of chemical potential energy is burned in 1 s. During that second, the engine does 4,000 J of work.
(a) What is the engine's efficiency (in percent)?
%
(b) The burning gasoline has a temperature of about 4,100°F (2,500 K). The waste heat from the engine flows into air at about 82°F (301 K). What is the Carnot efficiency (in percent) of a heat engine operating between these two temperatures?
%
As a gasoline engine is running, an amount of gasoline containing 13,600 J of chemical potential energy is burned in 1 s. During that second, the engine does 3,400 J of work.
(a) What is the engine's efficiency (in percent)?
%
(b) The burning gasoline has a temperature of about 4,100°F (2,500 K). The waste heat from the engine flows into air at about 90°F (305 K). What is the Carnot efficiency (in percent)
of a heat engine operating between these two temperatures?
Need Help?
%
Read It
A(n) 88-kg sprinter accelerates from rest to a speed of 11.0 m/s in 4.2 s.
(a) Calculate the mechanical work done by the sprinter during this time.
5324
J
(b) Calculate the average power the sprinter must generate.
1267.62
W
(c) If the sprinter converts food energy to mechanical energy with an efficiency of 25%, at what average rate is he burning Calories?
5070.48 X
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. Cal/s
Chapter 11 Solutions
College Physics
Ch. 11.2 - Prob. 11.1QQCh. 11.4 - Prob. 11.2QQCh. 11.5 - Will an ice cube wrapped in a wool blanket remain...Ch. 11.5 - Two rods of the same length and diameter are made...Ch. 11.5 - Stars A and B have the same temperature, but star...Ch. 11 - Rub the palm of your hand on a metal surface for...Ch. 11 - On a clear, cold night, why does frost tend to...Ch. 11 - Substance A has twice the specific heat of...Ch. 11 - Equal masses of substance A at 10.0C and substance...Ch. 11 - Prob. 5CQ
Ch. 11 - Prob. 6CQCh. 11 - Cups of water for coffee or tea can be warmed with...Ch. 11 - The U.S. penny is now made of copper-coated zinc....Ch. 11 - A tile floor may feel uncomfortably cold to your...Ch. 11 - In a calorimetry experiment, three samples A, B,...Ch. 11 - Figure CQ11.11 shows a composite bar made of three...Ch. 11 - Objects A and B have the same size and shape with...Ch. 11 - A poker is a stiff, nonflammable rod used to push...Ch. 11 - On a very hot day, its possible to cook an egg on...Ch. 11 - Prob. 15CQCh. 11 - Star A has twice the radius and twice the absolute...Ch. 11 - Convert 3.50 103 cal to the equivalent number of...Ch. 11 - Prob. 2PCh. 11 - A 75-kg sprinter accelerates from rest to a speed...Ch. 11 - Prob. 4PCh. 11 - A persons basal metabolic rate (BMR) is the rate...Ch. 11 - The temperature of a silver bar rises by 10.0C...Ch. 11 - The highest recorded waterfall in the world is...Ch. 11 - An aluminum rod is 20.0 cm long at 20.0C and has a...Ch. 11 - Lake Erie contains roughly 4.00 1011 m3 of water....Ch. 11 - A 3.00-g copper coin at 25.0C drops 50.0 m to the...Ch. 11 - Prob. 11PCh. 11 - Prob. 12PCh. 11 - Prob. 13PCh. 11 - A 1.5-kg copper block is given an initial speed of...Ch. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - What mass of water at 25.0C must be allowed to...Ch. 11 - Lead pellets, each of mass 1.00 g, are heated to...Ch. 11 - Prob. 19PCh. 11 - A large room in a house holds 975 kg of dry air at...Ch. 11 - Prob. 21PCh. 11 - A 1.50-kg iron horseshoe initially at 600C is...Ch. 11 - A student drops two metallic objects into a 120-g...Ch. 11 - When a driver brakes an automobile, the friction...Ch. 11 - A Styrofoam cup holds 0.275 kg of water at 25.0C....Ch. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - How much thermal energy is required to boil 2.00...Ch. 11 - A 75-g ice cube al 0C is placed in 825 g of water...Ch. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - A high-end gas stove usually has at least one...Ch. 11 - Prob. 38PCh. 11 - Steam at 100.C is added to ice at 0C. (a) Find the...Ch. 11 - The excess internal energy of metabolism is...Ch. 11 - A 3.00-g lead bullet at 30.0C is fired at a speed...Ch. 11 - A glass windowpane in a home is 0.62 cm thick and...Ch. 11 - A pond with a flat bottom has a surface area of...Ch. 11 - The thermal conductivities of human tissues vary...Ch. 11 - A steam pipe is covered with 1.50-cm-thick...Ch. 11 - The average thermal conductivity of the walls...Ch. 11 - Consider two cooking pots of the same dimensions,...Ch. 11 - A thermopane window consists of two glass panes,...Ch. 11 - A copper rod and an aluminum rod of equal diameter...Ch. 11 - A Styrofoam box has a surface area of 0.80 m and a...Ch. 11 - A rectangular glass window pane on a house has a...Ch. 11 - A granite ball of radius 2.00 m and emissivity...Ch. 11 - Measurements on two stars indicate that Star X has...Ch. 11 - The filament of a 75-W light bulb is at a...Ch. 11 - The bottom of a copper kettle has a 10.0-cm radius...Ch. 11 - A family comes home from a long vacation with...Ch. 11 - A 0.040.-kg ice cube floats in 0.200 kg of water...Ch. 11 - The surface area of an unclothed person is 1.50...Ch. 11 - A student measures the following data in a...Ch. 11 - Prob. 60APCh. 11 - A class of 10 students; taking an exam has a power...Ch. 11 - A class of 10 students taking an exam has a power...Ch. 11 - A bar of gold (Au) is in thermal contact with a...Ch. 11 - An iron plate is held against an iron, wheel so...Ch. 11 - Prob. 65APCh. 11 - Three liquids are at temperatures of 10C, 20C, and...Ch. 11 - Earths surface absorbs an average of about 960....Ch. 11 - A wood stove is used to heat a single room. The...Ch. 11 - Prob. 69APCh. 11 - Prob. 70APCh. 11 - The surface of the Sun has a temperature of about...Ch. 11 - The evaporation of perspiration is the primary...Ch. 11 - Prob. 73APCh. 11 - An ice-cube tray is filled with 75.0 g of water....Ch. 11 - An aluminum rod and an iron rod are joined end to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) How long will the energy in a 1470kJ (350kcal) cup of yogurt last in a woman doing work at the rate of 150 W with an efficiency of 20.0% (such as in leisurely climbing stairs)? (b) Does the time found in part (a) imply that it is easy to consume more food energy than you can reasonably expect to work off with exercise?arrow_forward(a) Calculate the energy in kJ used by a 55.0-kg woman who does 50 deep knee bends in which her center of mass is lowered and raised 0.400 m. (She does work in both directions.) You may assume her efficiency is 20%. (b) What is the average power consumption rate in watts if she does this in 3.00 min?arrow_forwardSewage at a certain pumping station is raised vertically by 5.49 m at the rate of 1 890 000 liters each day. The sewage, of density 1 050 kg/m3, enters and leaves the pump at atmospheric pressure and through pipes of equal diameter. (a) Find the output mechanical power of the lift station. (b) Assume an electric motor continuously operating with average power 5.90 kW runs the pump. Find its efficiency.arrow_forward
- When jogging at 13 km/h on a level surface, a 70-kg man uses energy at a rate of approximately 850 W. Using the facts that the “human engine” is approximately 25 efficient, determine the rate at which this man uses energy when jogging up a 5.0 slope at this same speed. Assume that the frictional retarding force is the same in both cases.arrow_forwardWater falls over a dam of height h with a mass flow rate of R, in units of kilograms per second. (a) Show that the power available from the water is P=Rgh where g is the free-fall acceleration. (b) Each hydroelectric unit at the Grand Coulee Dam takes in water at a rate of 8.50 105 kg/s from a height of 87.0 m. The power developed by the falling water is converted to electric power with an efficiency of 85.0%. How much electric power does each hydroelectric unit produce?arrow_forward(a) What is the average metabolic rate in watts of a man who metabolizes 10,500 kJ of feed energy in one day? (b) What is the maximum amount of work in joules he can do without breaking down fat, assuming a maximum eficiency of 20.0%? (c) Compare his work output with the daily output of a 187W (0.250horsepower) motor.arrow_forward
- Show that the coefficients of performance of refrigerators and heat pumps are related by COPref=COPhp1. Start with the definitions of the COP s and the conservation of energy relationship between Qh, QC, and W.arrow_forwardA coal power plant consumes 100,000 kg of coal per hour and produces 500 MW of power. If the heat of combustion of coal is 30 MJ/kg, what is the efficiency of the power plant?arrow_forwardA 4ton air conditioner removes 5.60107J (48,000 British thermal units) from a cold environment in 1.00 h. (a) What energy input in joules is necessary to do this if the air conditioner has an energy efficiency rating (EER) of 12.0? (b) What is the cost of doing this if the work costs 10.0 cents per 3.60106J (one kilowatt—hour)? (c) Discuss whether this cost seems realistic. Note that the energy efficiency rating (EER) of an air conditioner or refrigerator is defined to be the number of British thermal units of heat transfer from a cold environment per hour divided by the watts of power input.arrow_forward
- (a) What is the efficiency of an out-of-condition professor who does 2.10105J of useful work while metabolizing 500 kcal of food energy? (b) How many food calories would a well-conditioned athlete metabolize in doing the same work with an efficiency of 20%?arrow_forwardWhat is the efficiency of a subject on a treadmill who puts out work at the rate of 100 W while consuming oxygen at the rate of 2.00 L/min? (Hint: See Table 7.5.)arrow_forwardA crate of mass 10.0 kg is pulled up a rough incline with an initial speed of 1.50 m/s. The pulling force is 100 N parallel to the incline, which makes an angle of 20.0 with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.00 m. (a) How much work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crateincline system owing to friction. (c) How much work is done by the 100-N force on the crate? (d) What is the change in kinetic energy of the crate? (e) What is the speed of the crate after being pulled 5.00 m?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Heat Transfer: Crash Course Engineering #14; Author: CrashCourse;https://www.youtube.com/watch?v=YK7G6l_K6sA;License: Standard YouTube License, CC-BY