Concept explainers
A rigid, massless rod has three particles with equal masses attached to it as shown in Figure P11.37. The rod is free to rotate in a vertical plane about a frictionless axle perpendicular to the rod through the point P and is released from rest in the horizontal position at t = 0. Assuming m and d are known, find (a) the moment of inertia of the system of three particles about the pivot, (b) the torque acting on the system at t = 0, (c) the
Figure P11.37
(a)
The moment of inertia of the system of three particles about the pivot.
Answer to Problem 37AP
The moment of inertia of the system of three particles about the pivot is
Explanation of Solution
Given information:
The mass of three particles is
The formula to calculate moment of inertia is,
The distance of the particle 1 from point P is,
The distance of the particle 2 from point P is,
Substitute
Conclusion:
Therefore, the moment of inertia of the system of three particles about the pivot is
(b)
The torque acting on the system at
Answer to Problem 37AP
The torque acting on the system at
Explanation of Solution
Given information:
The mass of three particles is
Consider that the whole weight,
The formula to calculate torque is,
Substitute
Conclusion:
Therefore, the torque acting on the system at
(c)
The angular acceleration of the system at
Answer to Problem 37AP
The angular acceleration of the system at
Explanation of Solution
Given information:
The mass of three particles is
The formula to calculate angular acceleration is,
Substitute
Conclusion:
Therefore, the angular acceleration of the system at
(d)
The linear acceleration of the particle 3 at
Answer to Problem 37AP
The linear acceleration of the particle 3 at
Explanation of Solution
Given information:
The mass of three particles is
The formula to calculate linear acceleration is,
Substitute
Conclusion:
Therefore, the linear acceleration of the particle 3 at
(e)
The maximum kinetic energy of the system.
Answer to Problem 37AP
The maximum kinetic energy of the system is
Explanation of Solution
Given information:
The mass of three particles is
Because the axle is fixed, no external work is performed on the system of the earth and three particles, so the total mechanical energy is conserved.
The rotation kinetic energy is maximum when rod has swung to a vertical orientation with the centre of gravity directly under the axle.
The expression for the energy is,
Conclusion:
Therefore, the maximum kinetic energy of the system is
(f)
The maximum angular speed reached by the rod.
Answer to Problem 37AP
The maximum angular speed reached by the rod is
Explanation of Solution
Given information:
The mass of three particles is
In the vertical orientation, the rod has the greatest rotational kinetic energy.
The expression for the kinetic energy is,
Substitute
Conclusion:
Therefore, the maximum angular speed reached by the rod is
(g)
The maximum angular momentum of the system.
Answer to Problem 37AP
The maximum angular momentum of the system is
Explanation of Solution
Given information:
The mass of three particles is
The expression for the angular momentum is,
Substitute
Conclusion:
Therefore, the maximum angular momentum of the system is
(h)
The maximum speed of particle 2.
Answer to Problem 37AP
The maximum speed of particle 2 is
Explanation of Solution
Given information:
The mass of three particles is
The expression for the speed is,
Substitute
Conclusion:
Therefore, the maximum speed of particle 2 is
Want to see more full solutions like this?
Chapter 11 Solutions
Bundle: Physics For Scientists And Engineers With Modern Physics, Loose-leaf Version, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term
- 2.23 BIO Automobile Airbags. The human body can survive an acceleration trauma incident (sudden stop) if the magnitude of the ac- celeration is less than 250 m/s². If you are in an automobile accident with an initial speed of 105 km/h (65 mi/h) and are stopped by an air- bag that inflates from the dashboard, over what minimum distance must the airbag stop you for you to survive the crash?arrow_forwardPlease solve and answer these problems correctly.Thank you!!arrow_forward2.2. In an experiment, a shearwater (a seabird) was taken from its nest, flown 5150 km away, and released. The bird found its way back to its nest 13.5 days after release. If we place the origin at the nest and extend the +x-axis to the release point, what was the bird's average ve- locity in m/s (a) for the return flight and (b) for the whole episode, from leaving the nest to returning?arrow_forward
- Use relevant diagrams where necessary and go through it in detailsarrow_forwardYour blood pressure (usually given in units of "mm of Hg") is a result of the heart muscle pushing on your blood. The left side of the heart creates a pressure of 115 mm Hg by exerting a force directly on the blood over an effective area of 14.5 cm2. What force does it exert to accomplish this? (Give your answer as the number of Newtons and note that you will need to do some unit conversions.)arrow_forwardWhat is the absolute (total) pressure experienced by a diver at a depth of 17 meters below the surface of a lake? Assume that atmospheric pressure at the surface of the lake is 101,000 Pascals, g= 9.8 m/s2, and the density of the water in the lake is 997 kg/m3. Give your answer as the number of Pascals.arrow_forward
- A particular solid cube has an edge of length 0.59 meters and is made of a material whose density is 3500 kg/m3. What is the mass of the cube? Give your answer as the number of kilograms.arrow_forwardSolve and answer correctly please.Thank you!!arrow_forwardA cart on wheels (assume frictionless) with a mass of 20 kg is pulled rightward with a 50N force. What is its acceleration?arrow_forward
- Two-point charges of 5.00 µC and -3.00 µC are placed 0.250 m apart.a) What is the electric force on each charge? Include strength and direction and a sketch.b) What would be the magnitude of the force if both charges are positive? How about the direction? c) What will happen to the electric force on each piece of charge if they are moved twice as far apart? (Give a numerical answer as well as an explanation.)arrow_forwardy[m] The figure shows two snapshots of a single wave on a string. The wave is traveling to the right in the +x direction. The solid line is a snapshot of the wave at time t=0 s, while the dashed line is a snapshot of the wave at t=0.48s. 0 0.75 1.5 2.25 3 8 8 6 6 4 2 4 2 0 -2 -2 -4 -4 -6 -6 -8 -8 0 0.75 1.5 2.25 3 x[m] Determine the period of the wave in units of seconds. Enter your numerical answer below including at least 3 significant figures. Do not enter a fraction, do not use scientific notation.arrow_forwardNo chatgpt pls will upvotearrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning