Concept explainers
Calculate the reduction in heat transfer rate.
Answer to Problem 28P
The reduction in heat transfer rate is
Explanation of Solution
Given data:
Area of the concrete wall,
Thickness of the concrete wall,
Thickness of the insulation batt,
Inside temperature of concrete wall,
Outside temperature of concrete wall,
From Table 11.3 in the textbook, the thermal conductivity of the concrete wall is,
The thermal conductivity of the insulation batt is,
Formula used:
The formula for the heat transfer is,
Here,
Calculation:
Convert the unit of area of cross section into meter.
Convert the unit of thickness into meter for
Convert the unit of thickness into meter for
Substitute
From the truth the temperature difference in
Substitute
Change the unit of thermal conductivity for insulation batt,
For the temperature difference
Rearrange equation (1), we get
Here,
From equation (3), the expression for the heat transfer rate of the concrete wall with insulation batt is,
Substitute
Hence the reduction in heat transfer is,
Substitute
Therefore, the reduction in heat transfer rate is
Conclusion:
Hence, the reduction in heat transfer rate is
Want to see more full solutions like this?
Chapter 11 Solutions
ENGINEERING FUNDAMENTALS
- Determine the thermal conductivity of brickwork of cavity wall comprising 220mm brickwork, 12mm plaster, 80mm cavity, k values are plaster 0.6W/m°C, cavity resistance 0.18m"C/W, internal resistance 0.12m²"C/W, external resistance 0.06 m"C/W. U value of the wall is 1.78.arrow_forward100°? air flows through a round aluminum tube of ID 60mm and OD 80mm at 4 ?? .The tube is covered in 5mm thick fiberglass insulation. The tube is surrounded by RT air flowing at 5?? over the outside of the insulation. What is the heat rate through the wall of the tube? Assume that the air temperature is constant throughout the tube. Note: RT is 25 celsiusarrow_forwardDo a quick calculation of the thermal conductance (U value) across a cavity wall consisting of:1. Outer skin 220mm brickwork (North facing, exposed aspect) 2. 20mmcavity 3. Inner skin of 10mm plasterboard Compare this with the worked example of an insulated brick veneer wall in the worked example. Show your working.arrow_forward
- The heat loss, in Btu/hr, for two different types of walls is given. Find in Btu/hrthe difference in the heat losses.arrow_forwardFind the GSB, GSA and the absorption ratio when the oven dry mass is A = 200, in air B = 2020, and in water C = 1250.arrow_forwardA commercial building is built on a slab on grade foundation that is a 40 m by 18 m rectangular shape. Assume the outside design temperature is -15°C. Determine the rate of heat loss through the exterior edge of a concrete slab, a. For an uninsulated slab edge perimeter. b. For a slab edge perimeter insulated with 25 mm of perimeter insulation (an RSI-value of about 0.44).arrow_forward
- Urgent..... Classify the following materials with regard to their thermal insulation properties, rate them from the best to the worst: Solid concrete block, Burned clay block, clay brick. Cement - sand bricks, light weight blocks, and hollow concrete blocks.arrow_forwardCalculate the thickness of the masonry wall having thermalconductivity of 0.75 W/mK if the heat transfer is to be 80% of theheat transfer through a composite structural wall having athermal conductivity of 0.25 W/mK and a thickness of 100mm.Assume that both walls are subjected to same surfacetemperature.arrow_forwardQ4: Consider the heat flow in one direction (x-axis) through the composite wall shown in Figure Q4. Draw the thermal circuit then determine T1 and T2, and the heat flux (q, W/m2), knowing that the thermal conductivity of the Fir (0.11 W/m.°C), the concrete cinder block (0.76 W/m.°C), the building brick (0.69 W/m.°C) and the yellow pine (0.147 W/m.°C). Consider also the concrete cinder block and building brick sections are of equal thickness.arrow_forward
- Help your customer to calculate the heat losses through a composite wall that includes an 8-mm-thick hardwood siding, 40-mm by 130-mm hardwood studs with glass fiber insulation (paper faced, 28 kg/m3 ), and a 12-mm layer of gypsum (vermiculite) wall board as shown. The wall is 2.5 m high by 6.5 m wide. - 20 °C Wood siding Stud 130 mm Insulation Wall board 21 °C 40 mm Figure 1: The top view of thecomposite wall.arrow_forwardA concrete wall has a thermal resistance of 0.095 K/W. There is a glass window in the concrete wall with a thermal resistance of 0.046 K/W. What is the total thermal resistance for the whole configuration (wall+ window) (K/W)? O A. 0.1410 B. 32.2654 C. 0.6738 OD. 0.0310 OE. None of them.arrow_forwardA line measured with a 50-m long steel tape was determined to be 645.22 meter when the average temperature during taping was 15.750C. If the tape is of standard length at 200C and the coefficient of thermal expansion of steel is 0.0000116/10C, the correct length of the measured line isarrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning