OWLV2 FOR MASTERTON/HURLEY'S CHEMISTRY:
OWLV2 FOR MASTERTON/HURLEY'S CHEMISTRY:
8th Edition
ISBN: 9781305079304
Author: Hurley
Publisher: IACCENGAGE
bartleby

Videos

Textbook Question
Book Icon
Chapter 11, Problem 22QAP

The hypothetical reaction

X ( g ) + 1 2 Y ( g ) products is first-order in X and second-order in Y. The rate of the reaction is 0.00389 mol/L

min when [X] is 0.150 M and [Y] is 0.0800 M.

(a) What is the value for k?

(b) At what concentration of [Y] is the rate 0.00948 mol/L

min and [X] is 0.0441 M?

(c) At what concentration of [X] is the rate 0.0124 mol/L

min and [ Y ] = 2 [ X ] ?

Expert Solution
Check Mark
Interpretation Introduction

(a)

Interpretation:

To determine the value of rate constant for the given reaction.

Concept introduction:

Rate of a chemical reaction: It tells us about the speed at which the reactants are converted into products.

Mathematically, rate of reaction is directly proportional to the product of concentration of each reactant raised to the power equal to their respective stoichiometric coefficients.

Let’s say we have a reaction:

aA+bBcC+dDthen,rateα[A]a[B]brate=Kf[A]a[B]bwhereKf= rateconstanta and b are order of reaction with respect to A and B 

Answer to Problem 22QAP

Rate constant for the given reaction is 4.05 L/mol.min

Explanation of Solution

Here the chemical reaction is:

X+12Yproducts

Since the order of reaction with respect to X and Y is first order and second order respectively. Thus, rate law equation will look like:

X+12Yproductsrate=k[X][Y]2........(1)

Here we have:

[X] = 0.150 M

[Y] = 0.0800 M

Rate of reaction = 0.00389 mol/L.min

Plugging value of rate of reaction in equation 1 to get the value of rate constant as:

rate=k[X][Y]20.00389=k×(0.150)×(0.0800)2k=4.05L/mol.min

Hence, the rate constant for the given reaction is 4.05 L/mol.min

Expert Solution
Check Mark
Interpretation Introduction

(b)

Interpretation:

To determine the concentration of Y when rate of reaction is 0.00948 mol/L.min and concentration of X is 0.0441 M.

Concept Introduction:

Rate of a chemical reaction: It tells us about the speed at which the reactants are converted into products.

Mathematically, rate of reaction is directly proportional to the product of concentration of each reactant raised to the power equal to their respective stoichiometric coefficients.

Let’s say we have a reaction:

aA+bBcC+dDthen,rateα[A]a[B]brate=Kf[A]a[B]bwhereKf= rateconstanta and b are order of reaction with respect to A and B 

Answer to Problem 22QAP

The concentration of Y is 0.230 mol/L.

Explanation of Solution

Here the chemical reaction is:

X+12Yproducts

Since the order of reaction with respect to ICl and H2 is first order and second order respectively. Thus, rate law equation will look like:

X+12Yproductsrate=k[X][Y]2........(1)

Here we have:

[X] = 0.0441 M

Rate of reaction = 0.00948 mol/L.min

Rate constant = 4.05 L/mol.s

Plugging value of rate of reaction in equation 1 to get the value of rate constant as:

rate=k[X][Y]20.00948=(4.05)×(0.0441)×[Y]2[Y]2=0.0531[Y]=0.0531=0.230M

Hence, the concentration of Y is 0.230 mol/L.

Expert Solution
Check Mark
Interpretation Introduction

(c)

Interpretation:

To determine the concentration of X when rate of reaction is 0.0124 mol/L.min and concentration of Y is 2 times the concentration X i.e., [Y] = 2×[X].

Concept Introduction:

Rate of a chemical reaction: It tells us about the speed at which the reactants are converted into products.

Mathematically, rate of reaction is directly proportional to the product of concentration of each reactant raised to the power equal to their respective stoichiometric coefficients.

Let’s say we have a reaction:

aA+bBcC+dDthen,rateα[A]a[B]brate=Kf[A]a[B]bwhereKf= rateconstanta and b are order of reaction with respect to A and B 

Answer to Problem 22QAP

The concentration of X is 0.09145 mol/L

Explanation of Solution

Here the chemical reaction is:

X+12Yproducts

Since the order of reaction with respect to ICl and H2 is first order and second order respectively. Thus, rate law equation will look like:

X+12Yproductsrate=k[X][Y]2........(1)

Here we have:

[Y] = 2[X]

Rate of reaction = 0.0124 mol/L.min

Rate constant = 4.05 L/mol.min

Plugging value of rate of reaction in equation 1 to get the value of rate constant as:

rate=k[X][Y]20.0124=(4.05)×([X])×(2[X])2[X]3=0.01244.05×4[X]=7.65×1043=0.09145M

Hence, the concentration of X is 0.09145 mol/L

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q6: Using acetic acid as the acid, write the balanced chemical equation for the protonation of the two bases shown (on the -NH2). Include curved arrows to show the mechanism. O₂N- O₂N. -NH2 -NH2 a) Which of the two Bronsted bases above is the stronger base? Why? b) Identify the conjugate acids and conjugate bases for the reactants. c) Identify the Lewis acids and bases in the reactions.
Q5: For the two reactions below: a) Use curved electron-pushing arrows to show the mechanism for the reaction in the forward direction. Redraw the compounds to explicitly illustrate all bonds that are broken and all bonds that are formed. b) Label Bronsted acids and bases in the left side of the reactions. c) For reaction A, which anionic species is the weakest base? Which neutral compound is the stronger acid? Is the forward or reverse reaction favored? d) Label Lewis acids and bases, nucleophiles and electrophiles in the left side of the reactions. A. 용 CH3OH я хон CH3O OH B. HBr CH3ONa NaBr CH3OH
potential energy Br b) Translate the Newman projection below to its wedge-and-dash drawing. F H. OH CH3 CI c) Isopentane (2-methylbutane) is a compound containing a branched carbon chain. Draw a Newman projection of six conformations about the C2-C3 bond of isopentane. On the curve of potential energy versus angle of internal rotation for isopentane, label each energy maximum and minimum with one of the conformations. 0° 。 F A B D C angle of internal rotation E F 360° (=0°) JDownl

Chapter 11 Solutions

OWLV2 FOR MASTERTON/HURLEY'S CHEMISTRY:

Ch. 11 - A reaction has two reactants X and Y. What is the...Ch. 11 - A reaction has two reactants Q and P. What is the...Ch. 11 - What will the units of the rate constants in...Ch. 11 - What will the units of the rate constants in...Ch. 11 - Consider the reaction ZproductsThe data below give...Ch. 11 - Consider the reaction YproductsThe graph below...Ch. 11 - Complete the following table for the reaction...Ch. 11 - Complete the following table for the reaction...Ch. 11 - The decomposition of nitrogen dioxide is a...Ch. 11 - The decomposition of ammonia on tungsten at 1100C...Ch. 11 - The reaction ICl(g)+12 H2(g)12 I2(g)+HCl(g)is...Ch. 11 - The hypothetical reaction X(g)+12Y(g)productsis...Ch. 11 - For a reaction involving the decomposition of Z at...Ch. 11 - For a reaction involving the decomposition of Y,...Ch. 11 - When boron trifluoride reacts with ammonia, the...Ch. 11 - When nitrogen dioxide reacts with carbon monoxide,...Ch. 11 - Hydrogen bromide is a highly reactive and...Ch. 11 - Diethylhydrazine reacts with iodine according to...Ch. 11 - The equation for the reaction between iodide and...Ch. 11 - Prob. 30QAPCh. 11 - In a solution at a constant H+ concentration,...Ch. 11 - Consider the reaction Â...Ch. 11 - Nitrosyl bromide decomposes to nitrogen oxide and...Ch. 11 - Prob. 34QAPCh. 11 - Azomethane decomposes into nitrogen and ethane at...Ch. 11 - The decomposition of sulfuryl chloride, SO2Cl2, to...Ch. 11 - The first-order rate constant for the...Ch. 11 - Consider the first-order decomposition of phosgene...Ch. 11 - The decomposition of azomethane, (CH3)2N2, to...Ch. 11 - The first-order rate constant for the...Ch. 11 - In the first-order decomposition of acetone at...Ch. 11 - The decomposition of sulfuryl chlorideSO2Cl2fur...Ch. 11 - Dinitrogen pentoxide gas decomposes to form...Ch. 11 - Sucrose (C12H22O11) hydrolyzes into glucose and...Ch. 11 - Iodine-131 is used to treat tumors in the thyroid....Ch. 11 - Cesium-131 is the latest tool of nuclear medicine....Ch. 11 - Prob. 47QAPCh. 11 - A sample of sodium-24 chloride contains 0.050 mg...Ch. 11 - The decomposition of A at 850C is a zero-order...Ch. 11 - The decomposition of R at 33C is a zero-order...Ch. 11 - For the zero-order decomposition of HI on a gold...Ch. 11 - For the zero-order decomposition of ammonia on...Ch. 11 - Ammonium cyanate, NH4NCO, in water rearranges to...Ch. 11 - Butadiene, C4H6, dimerizes according to the...Ch. 11 - The rate constant for the second-order reaction...Ch. 11 - The decomposition of nitrosyl chloride...Ch. 11 - An increase in temperature from 23C to 36C...Ch. 11 - If the activation energy of a reaction is 9.13 kJ,...Ch. 11 - The following data are obtained for the gas-phase...Ch. 11 - The following data are obtained for the...Ch. 11 - Consider the following hypothetical reaction:...Ch. 11 - For the reaction: Q+RY+ZH=128kJ Draw a...Ch. 11 - The uncoiling of deoxyribonucleic acid (DNA) is a...Ch. 11 - The precipitation of egg albumin in water at 100C...Ch. 11 - Prob. 65QAPCh. 11 - Prob. 66QAPCh. 11 - For the reaction 2N2O(g)2N2(g)+O2(g) the rate...Ch. 11 - For the decomposition of a peroxide, the...Ch. 11 - Consider a 5.000 M solution of the hypothetical...Ch. 11 - The decomposition of N2O5 to NO2 and NO3 is a...Ch. 11 - For a certain reaction, Ea is 135 kJ and H=45 kJ....Ch. 11 - Consider a reaction in which E a=129 kJ and H=29...Ch. 11 - A catalyst lowers the activation energy of a...Ch. 11 - A reaction has an activation energy of 363 kJ at...Ch. 11 - Write the rate expression for each of the...Ch. 11 - Write the rate expression for each of the...Ch. 11 - For the reaction between hydrogen and iodine,...Ch. 11 - For the reaction 2H2(g)+2NO(g)N2(g)+2H2O(g) the...Ch. 11 - At low temperatures, the rate law for the reaction...Ch. 11 - Two mechanisms are proposed for the reaction...Ch. 11 - The hypothetical reaction QR+Xproductswas...Ch. 11 - When a base is added to an aqueous solution of...Ch. 11 - The decomposition of sulfuryl chloride, SO2Cl2, to...Ch. 11 - How much faster would a reaction proceed at 46C...Ch. 11 - Prob. 85QAPCh. 11 - Prob. 86QAPCh. 11 - A drug decomposes in the blood by a first-order...Ch. 11 - Prob. 88QAPCh. 11 - Prob. 89QAPCh. 11 - Prob. 90QAPCh. 11 - Consider the decomposition of A represented by...Ch. 11 - Consider the decomposition reaction 2X2Y+ZThe...Ch. 11 - Consider the following activation energy diagram....Ch. 11 - Three first-order reactions have the following...Ch. 11 - Consider the first-order decomposition reaction...Ch. 11 - Consider the following energy diagram (not to...Ch. 11 - Prob. 97QAPCh. 11 - Prob. 98QAPCh. 11 - The gas-phase reaction between hydrogen and iodine...Ch. 11 - Consider the coagulation of a protein at 100C. The...Ch. 11 - Prob. 101QAPCh. 11 - Prob. 102QAPCh. 11 - Prob. 103QAPCh. 11 - In a first-order reaction, suppose that a quantity...Ch. 11 - Consider the hypothetical first-order reaction...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781337399074
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry & Chemical Reactivity
    Chemistry
    ISBN:9781133949640
    Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781305957404
    Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
    Publisher:Cengage Learning
  • Text book image
    Chemistry: An Atoms First Approach
    Chemistry
    ISBN:9781305079243
    Author:Steven S. Zumdahl, Susan A. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry
    Chemistry
    ISBN:9781133611097
    Author:Steven S. Zumdahl
    Publisher:Cengage Learning
    Text book image
    Chemistry: Principles and Reactions
    Chemistry
    ISBN:9781305079373
    Author:William L. Masterton, Cecile N. Hurley
    Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Kinetics: Initial Rates and Integrated Rate Laws; Author: Professor Dave Explains;https://www.youtube.com/watch?v=wYqQCojggyM;License: Standard YouTube License, CC-BY