
To describe: Two datasets for each level of the four levels of measurements.

Answer to Problem 1TY
Nominal level of measurement:
Dataset 1:
Student | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Gender | Female | Female | Male | Male | Male | Female | Male | Female | Female | Male |
Dataset 2:
The dataset shows the nationality of 10 employees:
Indian, American, Nigerian, Sri Lankan, Pakistani, Russian, German, Tibetan, Brazilian, Argentines.
Ordinal level of measurement:
Dataset 1:
The dataset shows the top 10 football teams around the world:
Netherland, Brazil, England, North Korea, Germany, Portugal, Spain, Italy, Sweden and Chile.
Dataset 2:
The performance rating for an electronic gadget is given below:
3, 5, 2, 1, 4, 3, 5, 2, 1 and 4.
Interval level of measurement:
Dataset 1:
The dataset shows the temperatures measured in degrees during the months of May:
32, 34, 35, 30, 31.5, 29.2, 32.5, 30.5, 28.8 and 35.7.
Dataset 2:
The temperatures measured in Fahrenheit for 10 patients are given below:
101.5, 100, 102.6, 103, 100.8, 108, 106.3, 104.3, 99.5 and 106.
Ratio level of measurement:
Dataset 1:
The height of 10 students measured in centimetres is given below:
172, 170.5, 173, 185, 165.7, 150.2, 177, 183.8, 178.4 and 170.
Dataset 2:
The dataset shows the number of mistakes occurred while printing 5 books:
5, 10, 7, 8 and 9.
Explanation of Solution
Justification:
Level of measurements:
Nominal level of measurement:
If the data takes labels, names or other characteristics where mathematical operations are impossible then the level of measurement is nominal.
Ordinal level of measurement:
A data takes ordinal level of measurement if the entries or numerical values can be arranged according some order or rank. But, the differences between the values are not meaningful.
Interval level of measurement:
It consists of ordered values and also contains one more property of having equal distances or intervals between the values. Interval scale does not contain the values of absolute zero. In this level of measurement, the difference between the numbers is meaningful.
Ratio level of measurement:
It also consists of ordered values and equal distances or intervals between the values with one more property, that it contains absolute zero point in the values. In this level of measurement ratio of the numbers is meaningful.
Examples for Nominal data:
Dataset 1:
The dataset gender of the students
The dataset deals with the gender of students in a class. The gender (male and female) takes non-numerical entities where mathematical operations are not possible.
Dataset 2:
The dataset shows the nationality of 10 employees
The dataset deals with the nationality of employees in a company. The nationality takes non-numerical entities where mathematical operations are not possible.
Examples for Ordinal data:
Dataset 1:
The dataset shows the top 10 football teams around the world:
The dataset deals with the top 10 football teams in the world. The top 10 list takes non-numerical entities and the list can be arranged in some order. But doing mathematical calculations are impossible. Thus, the data follows ordinal level of measurement.
Dataset 2:
The performance rating for an electronic gadget is given below:
The respondents were asked to rate the performance of an electronic gadget in a 5 point scale. The rating can be arranged in order but performing mathematical calculations makes no sense. Thus, the data follows ordinal level of measurement.
Examples for interval data:
Dataset 1:
The dataset shows the temperatures measured in degrees during the months of May:
The dataset deals with the average temperatures measured during the months of May. The values can be arranged in order. There is no absolute zero on this scale. That is, a zero value represents the starting point on this scale. Finding difference between two values is also meaningful. Thus, the data follows interval level of measurement.
Dataset 2:
The temperatures measured in Fahrenheit for 10 patients are given below:
The dataset deals with the average temperature measured for 10 patients. The values can be arranged in order. There is no absolute zero on this scale. That is, a zero value represents the starting point on this scale. Finding difference between two values is also meaningful. Thus, the data follows interval level of measurement.
Examples for ratio data:
Dataset 1:
The height of 10 students measured in centimetres is given below:
The dataset deals with the sample height of students in a college. The values can be arranged in order. There is absolute zero on this scale. Finding difference between two values is also meaningful. A value can be expressed a multiple of another value. Thus, the data follows ratio level of measurement.
Dataset 2:
The dataset shows the number of mistakes occurred while printing 5 books:
The dataset deals with the number of mistakes occurred while printing 5 books. The values can be arranged in order. There is absolute zero on this scale. Finding difference between two values is also meaningful. Thus, the data follows ratio level of measurement.
Want to see more full solutions like this?
Chapter 1 Solutions
Elementary Statistics Books a la carte Plus NEW MyLab Statistics with Pearson eText - Access Card Package (6th Edition)
- Question: A company launches two different marketing campaigns to promote the same product in two different regions. After one month, the company collects the sales data (in units sold) from both regions to compare the effectiveness of the campaigns. The company wants to determine whether there is a significant difference in the mean sales between the two regions. Perform a two sample T-test You can provide your answer by inserting a text box and the answer must include: Null hypothesis, Alternative hypothesis, Show answer (output table/summary table), and Conclusion based on the P value. (2 points = 0.5 x 4 Answers) Each of these is worth 0.5 points. However, showing the calculation is must. If calculation is missing, the whole answer won't get any credit.arrow_forwardBinomial Prob. Question: A new teaching method claims to improve student engagement. A survey reveals that 60% of students find this method engaging. If 15 students are randomly selected, what is the probability that: a) Exactly 9 students find the method engaging?b) At least 7 students find the method engaging? (2 points = 1 x 2 answers) Provide answers in the yellow cellsarrow_forwardIn a survey of 2273 adults, 739 say they believe in UFOS. Construct a 95% confidence interval for the population proportion of adults who believe in UFOs. A 95% confidence interval for the population proportion is ( ☐, ☐ ). (Round to three decimal places as needed.)arrow_forward
- Find the minimum sample size n needed to estimate μ for the given values of c, σ, and E. C=0.98, σ 6.7, and E = 2 Assume that a preliminary sample has at least 30 members. n = (Round up to the nearest whole number.)arrow_forwardIn a survey of 2193 adults in a recent year, 1233 say they have made a New Year's resolution. Construct 90% and 95% confidence intervals for the population proportion. Interpret the results and compare the widths of the confidence intervals. The 90% confidence interval for the population proportion p is (Round to three decimal places as needed.) J.D) .arrow_forwardLet p be the population proportion for the following condition. Find the point estimates for p and q. In a survey of 1143 adults from country A, 317 said that they were not confident that the food they eat in country A is safe. The point estimate for p, p, is (Round to three decimal places as needed.) ...arrow_forward
- (c) Because logistic regression predicts probabilities of outcomes, observations used to build a logistic regression model need not be independent. A. false: all observations must be independent B. true C. false: only observations with the same outcome need to be independent I ANSWERED: A. false: all observations must be independent. (This was marked wrong but I have no idea why. Isn't this a basic assumption of logistic regression)arrow_forwardBusiness discussarrow_forwardSpam filters are built on principles similar to those used in logistic regression. We fit a probability that each message is spam or not spam. We have several variables for each email. Here are a few: to_multiple=1 if there are multiple recipients, winner=1 if the word 'winner' appears in the subject line, format=1 if the email is poorly formatted, re_subj=1 if "re" appears in the subject line. A logistic model was fit to a dataset with the following output: Estimate SE Z Pr(>|Z|) (Intercept) -0.8161 0.086 -9.4895 0 to_multiple -2.5651 0.3052 -8.4047 0 winner 1.5801 0.3156 5.0067 0 format -0.1528 0.1136 -1.3451 0.1786 re_subj -2.8401 0.363 -7.824 0 (a) Write down the model using the coefficients from the model fit.log_odds(spam) = -0.8161 + -2.5651 + to_multiple + 1.5801 winner + -0.1528 format + -2.8401 re_subj(b) Suppose we have an observation where to_multiple=0, winner=1, format=0, and re_subj=0. What is the predicted probability that this message is spam?…arrow_forward
- Consider an event X comprised of three outcomes whose probabilities are 9/18, 1/18,and 6/18. Compute the probability of the complement of the event. Question content area bottom Part 1 A.1/2 B.2/18 C.16/18 D.16/3arrow_forwardJohn and Mike were offered mints. What is the probability that at least John or Mike would respond favorably? (Hint: Use the classical definition.) Question content area bottom Part 1 A.1/2 B.3/4 C.1/8 D.3/8arrow_forwardThe details of the clock sales at a supermarket for the past 6 weeks are shown in the table below. The time series appears to be relatively stable, without trend, seasonal, or cyclical effects. The simple moving average value of k is set at 2. What is the simple moving average root mean square error? Round to two decimal places. Week Units sold 1 88 2 44 3 54 4 65 5 72 6 85 Question content area bottom Part 1 A. 207.13 B. 20.12 C. 14.39 D. 0.21arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





