Concept explainers
What does "calibrating an instrument" mean?
The meaning of 'Calibrating an instrument'.
Explanation of Solution
Calibration is a process in which the accuracy of an instrument is compared with a known standard values. Even if the instrument is perfectly calibrated, after using for a certain period of time and being exposed to moisture and vibration causes stress in it.
For example; if the speedometer of an automobile is actually travelling at a speed of 60 mph but shows a reading of 55 mph it shows the speedometer is not properly calibrated. Now, if the circuits and sensors are so adjusted that it records correct readings then, the instrument is said to be calibrated. So, it is necessary to calibrate the instrument after certain time periods to get the precise results.
There are some instruments that can be easily calibrated, some is calibrated by precise technicians only and there are also some instruments that cannot be calibrated at all.
Want to see more full solutions like this?
Chapter 11 Solutions
Bundle: Electricity For Refrigeration, Heating, And Air Conditioning, 10th + Refrigeration And Air Conditioning Technology, 8th + Mindtap Hvac, 4 ... Whitman/johnson's Refrigeration And Air Condi
- Solve step by steparrow_forwardAn element in plane stress is subjected to stresses ☐ x, y, and xx (see figure). Using Mohr's circle: a) Determine the principal stresses and the maximum in-plane shear stress acting at the point. b) Show these stresses in an appropriate sketch 12 MPa 27 MPa T 60 MPaarrow_forward5 kN-m A beam with an inverted tee-shaped cross section is subjected to positive bending mo- ments of M₂ = 5 kN-m. The cross-sectional dimensions of the beam are shown below. 10 mm Determine: (a) the centroid location, the moment of inertia about the z axis, 40 mm 5 kN-m K 150 mm H 15 mm 120 mm (b) the bending stress at points H and K. ans: 17.83mPa (c) the maximum bending stress produced in the cross section.arrow_forward
- EXAMPLE 6.4 Draw the shear and moment diagrams for the beam shown in Fig. 6-7a. 15 kN 80 kN·m -5 m B -5 m (a) 5 kN/m Darrow_forward2) A short rectangular post supports compressive loads of P- 175 kN and Q-90 kN, as shown in the figure below. A top view of the post showing the locations where loads P and Q are applied to the top of the post is also given. Determine the vertical normal stresses at corners a, b, c, and d of the post. P=175 kN Q=90 kN 160 mm 120 mm b 40 mm 160 mm a x d 60 mm 40 mmarrow_forwardFor the beam shown below: Find the equation for the shear force as function of x, V(x), along the x domains A-B (0 ≤ x ≤ 5 m) and B-C (5 m sxs 10 m), and draw the shear diagram for the beam. For each step, draw the associated free body diagram and indicate the equations of equilibrium used. Upload your answers in PDF. 2.5 m 15 kN 5 kN/m 80 kN·m Upload your D B 5m- ―5 marrow_forward
- Q What is Theories of Brittle failure? Q, what do you mean for each of what's Coming? utں وہی رہیں > Tyiled , Puc > Sut, So, KP, Kt, q When to use this law. N= Out Ouc * Ouc 1 -Out (01+0₂) I'm a mechanical engineering student. I don't understand What is the difference ductile materials. between Brittle andarrow_forwardQ2. (30 Marks) For the following figure: 1. Read the tolerances (GD&T) from the figure? 2. Write the Opitz code (5 digits only) for this product? 3. Write few points about point cloud? And how it can be used to inspect the geometry of products? 4. Draw sketch (free hand) to the top view of the figure below? (()) 5. For the symbol below the figure, what does it means? () will jo الهندسي 08±0.01 A 020±0.01 00.02MAM BM 010±0.01 00.02MAM ماذا يعني هذا Barrow_forwardQ: Find the steady-state response of the system shown in the figure below. Pulley, mass moment of inertia Jo 寻 k2 00000 For the following data: Fo sin of m 00000 uu x(t) w FO JO r m C k2 [Rad/s] [N] kg-m [cm] [Kg] [N.s/m] [N/m] kl [N/m] 28 58 1.8 13 18 540 540 1080arrow_forward
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningPrecision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage LearningAutomotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning