
Concept explainers
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
- a. Given two
vectors u and v, it is always true that 2u + v = v + 2u. - b. The vector in the direction of u with the length of v equals the vector in the direction of v with the length of u.
- c. If u ≠ 0 and u + v = 0, then u and v are parallel.
- d. If r′(t) = 0, then r(t) = 〈a, b, c〉, where a, b, and c are real numbers.
- e. The parameterized curve r(t) = 〈5 cos t, 12 cos t, 13 sin t〉 has arc length as a parameter.
- f. The position vector and the principal unit normal are always parallel on a smooth curve.
a.

Answer to Problem 1RE
The given statement is true.
Explanation of Solution
Given:
“Given two vectors u and v, it is always true that
Formula used:
Suppose the vectors
Vector addition is
Scalar multiplication is
Commutative property
Calculation:
Suppose
Use vector addition and scalar multiplication to compute the value of
Thus, the component of the vector
Use vector addition and scalar multiplication to compute the value of
Thus, the component of the vector
From the equations (1) and (2), it is observed that
Therefore, the given statement is true.
b.

Answer to Problem 1RE
The given statement is false.
Explanation of Solution
Given:
“The vector in the direction of u with the length of v equals the vector in the direction of v with the length of u.”
Formula used:
Suppose the two vectors are u and v.
The unit vector in the direction of u with the length of v is
Calculation:
Suppose
Let x be the unit vector in the direction of u with the length of v.
Use the above mentioned formula to compute the vector x.
Thus, the vector x is
Let y be the unit vector in the direction of v with the length of u.
Use the above mentioned formula to compute the vector y.
Thus, the vector y is
From the equations (1) and (2), it is observed that both the vectors are not equal.
Therefore, the given statement is false.
c.

Answer to Problem 1RE
The given statement is true.
Explanation of Solution
Given:
“If
Result used:
The vectors u and v are said to be parallel vectors, if one vector is the scalar multiple of the other vector.
Calculation:
Consider
This implies that the vector u is −1 times the vector v. By the result of parallel vectors, the two vector u and v are parallel.
Therefore, the given statement is true.
d.

Answer to Problem 1RE
The given statement is true.
Explanation of Solution
Given:
“If
Calculation:
Consider
Thus, the vector
Therefore, the given statement is true.
e.

Answer to Problem 1RE
The given statement is false.
Explanation of Solution
Given:
“The parameterized curve
Formula used:
Suppose
Calculation:
Differentiate
Compute
Since
Therefore, the given statement is false.
f.

Answer to Problem 1RE
The given statement is false.
Explanation of Solution
Given:
“The position vector and the principal unit normal are always parallel on a smooth curve.”
Formula used:
Suppose r is a smooth parameterized curve and s is the arc length.
The unit tangent vector T is
The principal unit normal vector is
Calculation:
Counter example
Consider
Differentiate
Use magnitude formula to obtain the value of
On further simplification,
Use unit tangent formula to compute
Thus, the unit tangent vector
Differentiate
Use magnitude formula to obtain the value of
On further simplification,
Use principal unit normal formula to compute the value of
Thus, the principal unit normal vector
It is observed that the position vector and the principal unit normal vector are not equal.
Therefore, the given statement is false.
Want to see more full solutions like this?
Chapter 11 Solutions
Calculus: Early Transcendentals (2nd Edition)
- 4. Suppose that A is made up of 5 column vectors in R³, and suppose that the rank(A)=3. a. How many solutions are there to Ax=0? Justify. b. What is a geometric description for the nullspace(A)? Justify. c. Do the column vectors of A span R³? Justify. d. Is A invertible? Justify.arrow_forward3. Suppose that A is 5 x 5 and rank(A)=4. Use this information to answer the following. a. Give a geometric description of nullspace(A). Justify. b. Is A invertible? Justify. c. Give a geometric description of the span of the column vectors of A. What space are the column vectors of A in? Justify. d. What is determinant of A? Justify.arrow_forward2. Consider the matrix: A || 1 1 -3 14 2 1 01 4 1 2 2 -26 1 -3 1 5] a) What is rank(A)? b) Is A invertible? Justify. c) Find the nullspace(A). Justify. d) Is the trivial solution the only solution to Ax=0? Justify. e) What is the span of the column vectors of A? Justify.arrow_forward
- E 5. Suppose that S={v € R²: v = [2x² - 3]}. Is S a subspace of R²? Prove or disprovearrow_forward6. Suppose that V1, V2 ER", show that span{v1, v2} is a subspace of Rn.arrow_forwardRa X 2) slots per pole per phase 3/31 180 Ko Sin (1) Kdl 1 sin (4) sin(3) Sin (30) اذا مرید شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed, 120 Fo lasa! G s.1000-950 20:05 1000 Capper losses: 5kw Rotor input lookw 0.05 ined sove in peaper I need a detailed solution on paper please 6) 1 ۳/۱ وه اذا ميريد شرح الكتب فقط look DC 7) rotov Find the general solution of the following equations: +4y=tan2x 3 7357 Find the general solution of the following equations: - Qll y + y (³) = 0. 101arrow_forward
- B: 18060 msl Kd Ka, Sin (n) I sin () sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed, 120 x 50 G 5005 1000 s = 1000-950 Copper bosses 5kW /0001 Rotor input 5 : loo kw 0.05 6) 1 اذا ميريد شرح الكتب فقط ١٥٠ 7) rotov DC ined sove in Deaper I need a detailed solution on paper please dy x+2y-4 = dx 2x-y-3 Find the general solution of the following equations: 02//yl-4y+13y=esinarrow_forward1) R₂ = X2 2) slots per pole per phase = 3/31 B msl kd 180 60 Kal Sin (1) I sin () sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed, 120 x 50 G 5005 1000 s = 1000-950 Copper bosses 5kW Rotor input: 5 0.05 loo kw 6) 1 /0001 اذا ميريد شرح الكتب فقط look 7) rotov DC ined sove in peaper I need a detailed solution on paper please Q1// Find the solution of: 'y' = x² +376 x4+316 xyo Q2 Find the solution of the initial-valued problems: ex-y y' +exarrow_forwardR₂ = X2 2) slots per pole per phase = 3/31 B-18060 msl kd Kasi Sin (1) I sin (6) sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed s = 1000-950 1000 Copper losses: 5kw Rotor input 5 0.05 6) 1 120 x 50 G loo kw ined sove in peaper I need a detailed solution on paper please Q3// x²y// +xy/ + (x² - ½) y = x³/². اذا ميريد شرح الكتب فقط look 7) rotor DC Q4// x²y// - (2x+x²)y/ + (2 + x)y = x³. dy 2x+2y+4 = dx 2x-y-3arrow_forward
- ۳/۱ R2X2 2) slots per pole per phase = 3/31 B, 18060 msl Kas Sin() 1sin() sin(30) Sin (30) kd اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speeds S = 1000-950 1000 Copper bosses 5kw 120*50 loca G Rotor input 5 loo kw 6) 1 0.05 اذا ميريد شرح الكتب فقط lookw 7) rotor DC ined sove in peaper I need a detailed solution on paper please 064 Q1// Find the solution of QI/Find the solution of Inxy= 7357 x+2y³ y' = xy3arrow_forwardR₂ = X2 2) slots per pole per phase 3/31 msl 180 60 Kd Ka Sin (1) Isin (6) sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed, 120*50 1000 6 S = 1000-950 1000 Copper bosses: 5kw Rotor input 5 0.05 : loo kw 6) 1 اذا ميريد شرح الكتب فقط 100 7) rotor DC ined sove in peaper I need a detailed solution on paper please Find the general solution of the following equations: Q2lyl-4y+13y=esinx. Find the general solution of the following equations: " Qly (49) - 16y= 0. 151arrow_forward۳/۱ R₂ = X2 2) slots per pole per phase = 3/31 B-18060 msl kd Kasi Sin (1) I sin (6) sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed s = 1000-950 1000 Copper losses: 5kw Rotor input 5 0.05 6) 1 120 x 50 G loo kw اذا میرید شرح الكتب فقط look 7) rotor DC ined sove in peaper I need a detailed solution on paper dy please 04 12=-cosx.y + 2cosx with y(x) = 1 か 'Oy + xlny + xe")dx + (xsiny + xlnx +*dy=0. 01arrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,




