Concept explainers
Writing
(a)
To calculate: Acomponent form of u and v where
Answer to Problem 1RE
Solution:
Component form of uand v is
Explanation of Solution
Given:
Formula used:
If
Calculation:
If u
and
The component form of u is
If v
and
The component form of v is
(b)
To calculate: u and vas the linear combination of the standard unit vectors i and jwhere
Answer to Problem 1RE
Solution:
The vectors
Explanation of Solution
Given:
Formula used:
If
Calculation:
According to the calculation of part (a), a component form of u and vis
Therefore, the vectors
(c)
To calculate: Magnitudes of u and vwhere
Answer to Problem 1RE
Solution:
The magnitude of u is
Explanation of Solution
Given:
Formula used:
According to the Distance Formula, the length (or magnitude) of vectoru is:
Calculation:
As per part (a),
and v=
Therefore, the magnitude of u is
(d)
To calculate: The value of
Answer to Problem 1RE
Solution:
The value of
Explanation of Solution
Given:
Formula used:
The scalar multiple of c and u is the vector:
The vector sum of u and v is the vector:
Calculation:
According to the calculation of part (a), a component form of u and v is
Find the value of
Want to see more full solutions like this?
Chapter 11 Solutions
CALC.,EARLY TRANSCEND..(LL)-W/WEBASSIGN
- Which degenerate conic is formed when a double cone is sliced through the apex by a plane parallel to the slant edge of the cone?arrow_forward1/ Solve the following: 1 x + X + cos(3X) -75 -1 2 2 (5+1) e 5² + 5 + 1 3 L -1 1 5² (5²+1) 1 5(5-5)arrow_forwardI need expert handwritten solution.to this integralarrow_forward
- Example: If ƒ (x + 2π) = ƒ (x), find the Fourier expansion f(x) = eax in the interval [−π,π]arrow_forwardExample: If ƒ (x + 2π) = ƒ (x), find the Fourier expansion f(x) = eax in the interval [−π,π]arrow_forwardPlease can you give detailed steps on how the solutions change from complex form to real form. Thanks.arrow_forward
- Examples: Solve the following differential equation using Laplace transform (e) ty"-ty+y=0 with y(0) = 0, and y'(0) = 1arrow_forwardExamples: Solve the following differential equation using Laplace transform (a) y" +2y+y=t with y(0) = 0, and y'(0) = 1arrow_forwardπ 25. If lies in the interval <0 and Sinh x = tan 0. Show that: 2 Cosh x= Sec 0, tanh x =Sin 0, Coth x = Csc 0, Csch x = Cot 0, and Sech x Cos 0.arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning