The reason why the categorizing moon by geological activities is helpful.

Answer to Problem 1QP
Option (a) is correct. The geological activities explain the underlying physical process on the moon.
Explanation of Solution
The moons are categorized in several manners in order to have a pattern of their study. The categorizing on the moons in terms of the geological activities occurring on the surface of the moon is considered to be the most efficient way to study the moons.
The geological activities are the activities that occur on the surface of the moons. It includes the volcanic eruptions, the lava flowing on the surface of the moon etc. The amount of geological activities occurring on the surface of the moon provides lot information about the process undergoing beneath the surface of the moon.
Therefore, studying the moons based on the geological activities occurring on the surface makes it much easier to understand the composition and the physical process occurring beneath the surface of the moon.
Conclusion:
Thus, option (a) is correct. The geological activities explain the underlying physical process on the moon.
Option (b) is incorrect. The distance from the sun does not affect the geological activity occurring on the planet.
Option (c) is incorrect. The size and composition of the moon are not explained by the geological activities.
Option (d) is incorrect. The moons vary in size from one another frequently. They are not of same size.
Want to see more full solutions like this?
Chapter 11 Solutions
21st Century Astronomy
- need answer asap please thanks youarrow_forwardA man slides two boxes up a slope. The two boxes A and B have a mass of 75 kg and 50 kg, respectively. (a) Draw the free body diagram (FBD) of the two crates. (b) Determine the tension in the cable that the man must exert to cause imminent movement from rest of the two boxes. Static friction coefficient USA = 0.25 HSB = 0.35 Kinetic friction coefficient HkA = 0.20 HkB = 0.25 M₁ = 75 kg MB = 50 kg P 35° Figure 3 B 200arrow_forwardA golf ball is struck with a velocity of 20 m/s at point A as shown below (Figure 4). (a) Determine the distance "d" and the time of flight from A to B; (b) Determine the magnitude and the direction of the speed at which the ball strikes the ground at B. 10° V₁ = 20m/s 35º Figure 4 d Barrow_forward
- The rectangular loop of wire shown in the figure (Figure 1) has a mass of 0.18 g per centimeter of length and is pivoted about side ab on a frictionless axis. The current in the wire is 8.5 A in the direction shown. Find the magnitude of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane. Find the direction of the magnetic field parallel to the y-axis that will cause the loop to swing up until its plane makes an angle of 30.0 ∘ with the yz-plane.arrow_forwardA particle with a charge of − 5.20 nC is moving in a uniform magnetic field of (B→=−( 1.22 T )k^. The magnetic force on the particle is measured to be (F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the y and z component of the velocity of the particle.arrow_forwardneed answer asap please thank youarrow_forward
- 3. a. Determine the potential difference between points A and B. b. Why does point A have a higher potential energy? Q = +1.0 C 3.2 cm 4.8 cm Aarrow_forwardPls help ASAParrow_forward1. Explain the difference between electrical field, potential difference, and electrical potential differencearrow_forward
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning





