COLLEGE PHYSICS
COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 11, Problem 1QAP
To determine

How much thicker the dam should be if it needs to hold back a lake twice as long as the present lake, but with the same depth.

Expert Solution & Answer
Check Mark

Answer to Problem 1QAP

The dam which needs to hold back a lake which is twice as long as the present lake, is of the same thickness as before.

Explanation of Solution

Introduction:

All fluids exert a pressure on their containers. This pressure varies with the depth of the liquid in the container.

A dam built to hold the water in a lake, exerts pressure on the walls of the dam. The thickness of the dam is decided on the basis of the pressure it would experience at a particular depth.

Pressure P exerted by a liquid at a depth h is given by the expression,

  P=hρg

Here, ρis the density of water and g is the acceleration of free fall.

Therefore, it can be seen that the pressure at a depth is proportional to the height of the liquid column above the point.

The length of the water body causes no change in the pressure exerted.

Hence, even if the lake were to be twice as long, a dam of the same thickness as before, can hold the water inside the dam.

Conclusion:

Since the pressure exerted by a liquid column at a point is dependent only on the depth of the point, density of the liquid and the acceleration of free fall at the place, no change in the thickness of the dam is required to hold the water in a lake which is twice as long as the previous, if the depth remains the same.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A proton moves at 5.20 × 105 m/s in the horizontal direction. It enters a uniform vertical electric field with a magnitude of 8.40 × 103 N/C. Ignore any gravitational effects. (a) Find the time interval required for the proton to travel 6.00 cm horizontally. 83.33 ☑ Your response differs from the correct answer by more than 10%. Double check your calculations. ns (b) Find its vertical displacement during the time interval in which it travels 6.00 cm horizontally. (Indicate direction with the sign of your answer.) 2.77 Your response differs from the correct answer by more than 10%. Double check your calculations. mm (c) Find the horizontal and vertical components of its velocity after it has traveled 6.00 cm horizontally. 5.4e5 V × Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. I + [6.68e4 Your response differs significantly from the correct answer. Rework your solution from the beginning and check each…
(1) Fm Fmn mn Fm B W₁ e Fmt W 0 Fit Wt 0 W Fit Fin n Fmt n As illustrated in Fig. consider the person performing extension/flexion movements of the lower leg about the knee joint (point O) to investigate the forces and torques produced by muscles crossing the knee joint. The setup of the experiment is described in Example above. The geometric parameters of the model under investigation, some of the forces acting on the lower leg and its free-body diagrams are shown in Figs. and For this system, the angular displacement, angular velocity, and angular accelera- tion of the lower leg were computed using data obtained during the experiment such that at an instant when 0 = 65°, @ = 4.5 rad/s, and a = 180 rad/s². Furthermore, for this sys- tem assume that a = 4.0 cm, b = 23 cm, ß = 25°, and the net torque generated about the knee joint is M₁ = 55 Nm. If the torque generated about the knee joint by the weight of the lower leg is Mw 11.5 Nm, determine: = The moment arm a of Fm relative to the…
The figure shows a particle that carries a charge of 90 = -2.50 × 106 C. It is moving along the +y -> axis at a speed of v = 4.79 × 106 m/s. A magnetic field B of magnitude 3.24 × 10-5 T is directed along the +z axis, and an electric field E of magnitude 127 N/C points along the -x axis. Determine (a) the magnitude and (b) direction (as an angle within x-y plane with respect to +x- axis in the range (-180°, 180°]) of the net force that acts on the particle. +x +z AB 90 +y

Chapter 11 Solutions

COLLEGE PHYSICS

Ch. 11 - Prob. 11QAPCh. 11 - Prob. 12QAPCh. 11 - Prob. 13QAPCh. 11 - Prob. 14QAPCh. 11 - Prob. 15QAPCh. 11 - Prob. 16QAPCh. 11 - Prob. 17QAPCh. 11 - Prob. 18QAPCh. 11 - Prob. 19QAPCh. 11 - Prob. 20QAPCh. 11 - Prob. 21QAPCh. 11 - Prob. 22QAPCh. 11 - Prob. 23QAPCh. 11 - Prob. 24QAPCh. 11 - Prob. 25QAPCh. 11 - Prob. 26QAPCh. 11 - Prob. 27QAPCh. 11 - Prob. 28QAPCh. 11 - Prob. 29QAPCh. 11 - Prob. 30QAPCh. 11 - Prob. 31QAPCh. 11 - Prob. 32QAPCh. 11 - Prob. 33QAPCh. 11 - Prob. 34QAPCh. 11 - Prob. 35QAPCh. 11 - Prob. 36QAPCh. 11 - Prob. 37QAPCh. 11 - Prob. 38QAPCh. 11 - Prob. 39QAPCh. 11 - Prob. 40QAPCh. 11 - Prob. 41QAPCh. 11 - Prob. 42QAPCh. 11 - Prob. 43QAPCh. 11 - Prob. 44QAPCh. 11 - Prob. 45QAPCh. 11 - Prob. 46QAPCh. 11 - Prob. 47QAPCh. 11 - Prob. 48QAPCh. 11 - Prob. 49QAPCh. 11 - Prob. 50QAPCh. 11 - Prob. 51QAPCh. 11 - Prob. 52QAPCh. 11 - Prob. 53QAPCh. 11 - Prob. 54QAPCh. 11 - Prob. 55QAPCh. 11 - Prob. 56QAPCh. 11 - Prob. 57QAPCh. 11 - Prob. 58QAPCh. 11 - Prob. 59QAPCh. 11 - Prob. 60QAPCh. 11 - Prob. 61QAPCh. 11 - Prob. 62QAPCh. 11 - Prob. 63QAPCh. 11 - Prob. 64QAPCh. 11 - Prob. 65QAPCh. 11 - Prob. 66QAPCh. 11 - Prob. 67QAPCh. 11 - Prob. 68QAPCh. 11 - Prob. 69QAPCh. 11 - Prob. 70QAPCh. 11 - Prob. 71QAPCh. 11 - Prob. 72QAPCh. 11 - Prob. 73QAPCh. 11 - Prob. 74QAPCh. 11 - Prob. 75QAPCh. 11 - Prob. 76QAPCh. 11 - Prob. 77QAPCh. 11 - Prob. 78QAPCh. 11 - Prob. 79QAPCh. 11 - Prob. 80QAPCh. 11 - Prob. 81QAPCh. 11 - Prob. 82QAPCh. 11 - Prob. 83QAPCh. 11 - Prob. 84QAPCh. 11 - Prob. 85QAPCh. 11 - Prob. 86QAPCh. 11 - Prob. 87QAPCh. 11 - Prob. 88QAPCh. 11 - Prob. 89QAPCh. 11 - Prob. 90QAPCh. 11 - Prob. 91QAPCh. 11 - Prob. 92QAPCh. 11 - Prob. 93QAPCh. 11 - Prob. 94QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY