
(a)
Interpretation:
Identify the intermolecular forces that must be overcome to perform the following statement of melt ice.
Concept Introduction:
London dispersion force also called an induced dipole-induced dipole attraction is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles.
Dipole-dipole interaction results when two dipolar molecules interact with each other through space, there occurs a partially negative charge of one of the polar molecules is attracted to the partially positive charge of the second polar molecule.
Ion-dipole interaction results of an electrostatic interaction between a charged ion and a molecule that has a dipole.
A hydrogen bonding is partially an electrostatic attraction between
(a)

Answer to Problem 1PS
In ice the water molecules are held together by hydrogen bonding network to from a three dimensional lattice.
Explanation of Solution
In water molecules the hydrogen bond in ice are linear and have strong directional property, this directionality indicate that hydrogen bonds in ice are as strong as a covalent bond. During melting few of these hydrogen bonds are melting to from water.
In water a
(b).
Interpretation:
Identify the intermolecular forces that must be overcome to perform the following statement of sublime solid of iodine.
Concept Introduction:
London dispersion force also called an induced dipole-induced dipole attraction is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles.
Dipole-dipole interaction results when two dipolar molecules interact with each other through space, there occurs a partially negative charge of one of the polar molecules is attracted to the partially positive charge of the second polar molecule.
Ion-dipole interaction results of an electrostatic interaction between a charged ion and a molecule that has a dipole.
A hydrogen bonding is partially an electrostatic attraction between
(b).

Answer to Problem 1PS
Iodine molecules are non-polar, only dispersion forces must be overcome.
Explanation of Solution
They sublime because though there are covalent bonds within molecule holding two iodine atoms together.
From this molecule Van der Waal’s forces are very weak interactions between molecules of a substance hence the iodine molecules easily escape from the solid structure easily.
(c)
Interpretation:
Identify the intermolecular forces that must be overcome to perform the following statement of convert liquid
Concept Introduction:
London dispersion force also called an induced dipole-induced dipole attraction is a temporary attractive force that results when the electrons in two adjacent atoms occupy positions that make the atoms form temporary dipoles.
Dipole-dipole interaction results when two dipolar molecules interact with each other through space, there occurs a partially negative charge of one of the polar molecules is attracted to the partially positive charge of the second polar molecule.
Ion-dipole interaction results of an electrostatic interaction between a charged ion and a molecule that has a dipole.
A hydrogen bonding is partially an electrostatic attraction between
(c)

Answer to Problem 1PS
Ammonia vaporization having hydrogen bonding was occurred.
Explanation of Solution
Ammonia is a polar molecule since the nitrogen atom is more electronegative than hydrogen, and the only intermolecular forces present are London dispersion force was occurred.
Want to see more full solutions like this?
Chapter 11 Solutions
Owlv2 With Ebook, 1 Term (6 Months) Printed Access Card For Kotz/treichel/townsend/treichel's Chemistry & Chemical Reactivity, 10th
- [Review Topics] [References] Write an acceptable IUPAC name for the compound below. (Only systematic names, not common names are accepted by this question.) Keep the information page open for feedback reference. The IUPAC name is Submit Answer Retry Entire Group 9 more group attempts remainingarrow_forwardPlease draw.arrow_forwardA chromatogram with ideal Gaussian bands has tR = 9.0 minutes and w1/2 = 2.0 minutes. Find the number of theoretical plates that are present, and calculate the height of each theoretical plate if the column is 10 centimeters long.arrow_forward
- An open tubular column has an inner diameter of 207 micrometers, and the thickness of the stationary phase on the inner wall is 0.50 micrometers. Unretained solute passes through in 63 seconds and a particular solute emerges at 433 seconds. Find the distribution constant for this solute and find the fraction of time spent in the stationary phase.arrow_forwardConsider a chromatography column in which Vs= Vm/5. Find the retention factor if Kd= 3 and Kd= 30.arrow_forwardTo improve chromatographic separation, you must: Increase the number of theoretical plates on the column. Increase the height of theoretical plates on the column. Increase both the number and height of theoretical plates on the column. Increasing the flow rate of the mobile phase would Increase longitudinal diffusion Increase broadening due to mass transfer Increase broadening due to multiple paths You can improve the separation of components in gas chromatography by: Rasing the temperature of the injection port Rasing the temperature of the column isothermally Rasing the temperature of the column using temperature programming In GC, separation between two different solutes occurs because the solutes have different solubilities in the mobile phase the solutes volatilize at different rates in the injector the solutes spend different amounts of time in the stationary phasearrow_forward
- please draw and example of the following: Show the base pair connection(hydrogen bond) in DNA and RNAarrow_forwardNaming and drawing secondary Write the systematic (IUPAC) name for each of the following organic molecules: CH3 Z structure CH3 CH2 CH2 N-CH3 CH3-CH2-CH2-CH-CH3 NH CH3-CH-CH2-CH2-CH2-CH2-CH2-CH3 Explanation Check ☐ name ☐ 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy C Garrow_forwardC This question shows how molecular orbital (MO) theory can be used to understand the chemical properties of elemental oxygen O₂ and its anionic derivative superoxide Oz. a) Draw the MO energy diagram for both O2 and O2. Clearly label your diagram with atomic orbital names and molecular orbital symmetry labels and include electrons. Draw the Lewis structure of O2. How does the MO description of O2 differ from the Lewis structure, and how does this difference relate to the high reactivity and magnetic properties of oxygen? ) Use the MO diagram in (a) to explain the difference in bond length and bond energy between superoxide ion (Oz, 135 pm, 360 kJ/mol) and oxygen (O2, 120.8 pm, 494 kJ/mol).arrow_forward
- Please drawarrow_forward-Page: 8 nsition metal ions have high-spin aqua complexes except one: [Co(HO)₁]". What is the d-configuration, oxidation state of the metal in [Co(H:O))"? Name and draw the geometry of [Co(H2O)]? b) Draw energy diagrams showing the splitting of the five d orbitals of Co for the two possible electron configurations of [Co(H2O)]: Knowing that A = 16 750 cm and Пl. = 21 000 cm, calculate the configuration energy (.e., balance or ligand-field stabilization energy and pairing energy) for both low spin and high spin configurations of [Co(H2O)]. Which configuration seems more stable at this point of the analysis? (Note that 349.76 cm = 1 kJ/mol) Exchange energy (IT) was not taken into account in part (d), but it plays a role. Assuming exchange an occur within t29 and within eg (but not between tz, and ea), how many exchanges are possible in the low in configuration vs in the high spin configuration? What can you say about the importance of exchange energy 07arrow_forwardDraw everything please on a piece of paper explaining each steparrow_forward
- EBK A SMALL SCALE APPROACH TO ORGANIC LChemistryISBN:9781305446021Author:LampmanPublisher:CENGAGE LEARNING - CONSIGNMENTIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





