Sustainable Energy, SI Edition
Sustainable Energy, SI Edition
2nd Edition
ISBN: 9781337672092
Author: DUNLAP, Richard A.
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 11, Problem 1P
To determine

Find the final temperature of water.

Expert Solution & Answer
Check Mark

Answer to Problem 1P

The final temperature of water is 20.23°C¯.

Explanation of Solution

Given information:

The mass of one cubic meter water m is 1,000kg.

The vertical height h is 100m.

The initial temperature T0 is 20°C

Calculation:

Take the gravitational constant g as 9.8m/s2.

Find the potential energy at the height h E as follows:

E=mgh=1,000kg×9.8m/s2×100m=98×104J

Take the specific heat of water C as 4,186J/kg°C.

Calculate the change in temperature ΔT as follows:

ΔT=EmC=98×104J1,000kg×4,186J/kg°C=0.23°C

Find the final temperature of water T as follows:

T=T0+ΔT=20°C+0.23°C=20.23°C

Therefore, the final temperature of water is 20.23°C¯.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
solve for dt/dx=f(t,x)=x+t^2
Calculate the BMs (bending moments) at all the joints of the beam shown in Fig.1 using the slope deflection method, draw the resulting shear force diagran and bending moment diagram. The beam is subjected to an UDL of w=65m. L=4.5m, L1= 1.8m.  Assume the support at C is pinned, and A and B are roller supports.  E = 200 GPa, I = 250x106 mm4.
Problem 2 (A is fixed and C is a pin) Find the reactions and A and C. 10 k- 6 ft 6 ft B A 2 k/ft 15 ft
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781133108689
Author:Richard A. Dunlap
Publisher:Cengage Learning