Sustainable Energy, Si Edition
Sustainable Energy, Si Edition
2nd Edition
ISBN: 9781337551670
Author: DUNLAP, Richard A.
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 11, Problem 1P
To determine

Find the final temperature of water.

Expert Solution & Answer
Check Mark

Answer to Problem 1P

The final temperature of water is 20.23°C¯.

Explanation of Solution

Given information:

The mass of one cubic meter water m is 1,000kg.

The vertical height h is 100m.

The initial temperature T0 is 20°C

Calculation:

Take the gravitational constant g as 9.8m/s2.

Find the potential energy at the height h E as follows:

E=mgh=1,000kg×9.8m/s2×100m=98×104J

Take the specific heat of water C as 4,186J/kg°C.

Calculate the change in temperature ΔT as follows:

ΔT=EmC=98×104J1,000kg×4,186J/kg°C=0.23°C

Find the final temperature of water T as follows:

T=T0+ΔT=20°C+0.23°C=20.23°C

Therefore, the final temperature of water is 20.23°C¯.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Vehicles begin to arrive at an amusement park entrance at 8:00 A.M. at a rate of 1000veh/h. Some of these vehicles have electronic identifiers that allow them to enter the park immediately, beginning at 8:00 A.M., without stopping (they are billed remotely). All vehicles without such identifiers stop at a single processing booth, but they wait in line until it opens at 8:10 A.M. Once open, the operator processes vehicles at μ(t) = 8 + 0.5t [where μ(t) is in vehicles per minute and t is in minutes after 8:10 A.M.]. An observer notes that at 8:25 there are exactly 20 vehicles in the queue. What percent of arriving vehicles have electronic identifiers and what is the total delay (from the 8:00 A.M. until the queue clears) for those vehicles without the electronic identifiers (assume D/D/1 queuing)?
1. For truss given in a figure below, determine reactions, and forces in all truss members. De- termine forces using two methods independently: (a) method of joints, and (b) method of sections. Compare your results and verify that your solutions are accurate. Assume that force F = 10kN. 2m 2m 2m ▼F ▼F 4m ▼F 4m
1) Determine if the existing sedimentation basins are sufficient to accommodate the projected future capacity. If not, design upgrades to the sedimentation basins. A) Current Capacity: 22.5 MGD B) Future Capacity: 34.5 MGD for 110,000 residents C) If not, design upgrades to the sedimentation basins. 2) Specify the design flow rate, the type of basin (circular vs. rectangular) 3) Specify the basin dimensions (length, width, water depth or diameter and water depth). 4) Specify the dimensions of the launders (if applicable) and the length of the weir.
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781133108689
Author:Richard A. Dunlap
Publisher:Cengage Learning