
Concept explainers
Perform the same calculations as in (a) Example 11.1, and (b) Example 11.3, but for the tridiagonal system,
(a)

To calculate: The solution of following tridiagonal system with Thomas Algorithm:
Answer to Problem 1P
Solution:
The solution is
Explanation of Solution
Given:
A tridiagonal system:
Formula used:
(a) The decomposition is implemented as:
(2) Forward substitution is implemented as:
(3) Back substitution is implemented as:
For
Calculation:
Consider the system of equation:
Where,
First the decomposition is implemented as:
Now,
And,
And,
Thus, the matrix [A] is transformed to,
Now, the LU decomposition of the above matrix is,
The forward substitution is implemented as:
And,
Thus, the right-hand-side vector is modified to,
The right-hand-side vector can be used in conjunction with the [U] matrix to perform back substitution and obtain the solution as:
Also,
And,
Thus, the solution of the given system of equation is
(b)

To calculate: The solution of following tridiagonal system of equation with Gauss-Seidel method:
Answer to Problem 1P
Solution:
Using Gauss-Seidel method four iteration are performed to get
Explanation of Solution
Given:
A system of equation:
Formula used:
(1) The values of
(2) True percent relative error is given by,
(3) Convergence can be checked using the criterion
For all i, where j and j- 1 are the present and previous iterations.
Calculation:
The true solution is
Consider the system of equation:
Where,
First, solve each of the equations for its unknown on the diagonal
For initial guess, assume
Thus, equation (1) becomes,
This value, along with the assumed value of
Now, substitute the calculated values of
For the second iteration, the same process is repeated with
The true percent relative error is
Thus,
The value of
Thus,
Now, substitute the calculated values of
Thus,
For the third iteration, the same process is repeated with
The true percent relative error is
Thus,
The value of
Thus,
Now, substitute the calculated values of
Thus,
For the fourth iteration, the same process is repeated with
The true percent relative error is
Thus,
The value of
Thus,
Now, substitute the calculated values of
Thus,
The method is thus converging on the true solution.
Now, estimate the error:
Want to see more full solutions like this?
Chapter 11 Solutions
Numerical Methods for Engineers
- added 2 imagesarrow_forwardA movie studio wishes to determine the relationship between the revenue generated from the streaming of comedies and the revenue generated from the theatrical release of such movies. The studio has the following bivariate data from a sample of fifteen comedies released over the past five years. These data give the revenue x from theatrical release (in millions of dollars) and the revenue y from streaming (in millions of dollars) for each of the fifteen movies. The data are displayed in the Figure 1 scatter plot. Theater revenue, x Streaming revenue, y (in millions of (in millions of dollars) dollars) 13.2 10.3 62.6 10.4 20.8 5.1 36.7 13.3 44.6 7.2 65.9 10.3 49.4 15.7 31.5 4.5 14.6 2.5 26.0 8.8 28.1 11.5 26.1 7.7 28.2 2.8 60.7 16.4 6.7 1.9 Streaming revenue (in millions of dollars) 18+ 16+ 14 12+ xx 10+ 8+ 6+ 2- 0 10 20 30 40 50 60 70 Theater revenue (in millions of dollars) Figure 1 Send data to calculator Send data to Excel The least-squares regression line for these data has a slope…arrow_forwardhelp on this, results givenarrow_forward
- a) Suppose that we are carrying out the 1-phase simplex algorithm on a linear program in standard inequality form (with 3 variables and 4 constraints) and suppose that we have reached a point where we have obtained the following tableau. Apply one more pivot operation, indicating the highlighted row and column and the row operations you carry out. What can you conclude from your updated tableau? x1 x2 x3 81 82 83 84 81 -2 0 1 1 0 0 0 3 82 3 0 -2 0 1 2 0 6 12 1 1 -3 0 0 1 0 2 84 -3 0 2 0 0 -1 1 4 -2 -2 0 11 0 0-4 0 -8arrow_forwardb) Solve the following linear program using the 2-phase simplex algorithm. You should give the initial tableau, and each further tableau produced during the execution of the algorithm. If the program has an optimal solution, give this solution and state its objective value. If it does not have an optimal solution, say why. maximize ₁ - 2x2+x34x4 subject to 2x1+x22x3x41, 5x1 + x2-x3-×4 ≤ −1, 2x1+x2-x3-34 2, 1, 2, 3, 40.arrow_forward9. An elementary single period market model contains a risk-free asset with interest rate r = 5% and a risky asset S which has price 30 at time t = 0 and will have either price 10 or 60 at time t = 1. Find a replicating strategy for a contingent claim with payoff h(S₁) = max(20 - S₁, 0) + max(S₁ — 50, 0). Total [8 Marks]arrow_forward
- 8. An elementary single period market model has a risky asset with price So = 20 at the beginning and a money market account with interest rate r = 0.04 compounded only once at the end of the investment period. = = In market model A, S₁ 10 with 15% probability and S₁ 21 with 85% probability. In market model B, S₁ = 25 with 10% probability and S₁ = 30 with 90% probability. For each market model A, B, determine if the model is arbitrage-free. If not, construct an arbitrage. Total [9 Marks]arrow_forwardb) Solve the following linear program using the 2-phase simplex algorithm. You should give the initial tableau, and each further tableau produced during the execution of the algorithm. If the program has an optimal solution, give this solution and state its objective value. If it does not have an optimal solution, say why. maximize ₁ - 2x2+x34x4 subject to 2x1+x22x3x41, 5x1 + x2-x3-×4 ≤ −1, 2x1+x2-x3-34 2, 1, 2, 3, 40.arrow_forwardSuppose we have a linear program in standard equation form maximize cTx subject to Ax = b. x ≥ 0. and suppose u, v, and w are all optimal solutions to this linear program. (a) Prove that zu+v+w is an optimal solution. (b) If you try to adapt your proof from part (a) to prove that that u+v+w is an optimal solution, say exactly which part(s) of the proof go wrong. (c) If you try to adapt your proof from part (a) to prove that u+v-w is an optimal solution, say exactly which part(s) of the proof go wrong.arrow_forward
- a) Suppose that we are carrying out the 1-phase simplex algorithm on a linear program in standard inequality form (with 3 variables and 4 constraints) and suppose that we have reached a point where we have obtained the following tableau. Apply one more pivot operation, indicating the highlighted row and column and the row operations you carry out. What can you conclude from your updated tableau? x1 x2 x3 81 82 83 84 81 -2 0 1 1 0 0 0 3 82 3 0 -2 0 1 2 0 6 12 1 1 -3 0 0 1 0 2 84 -3 0 2 0 0 -1 1 4 -2 -2 0 11 0 0-4 0 -8arrow_forwardPlease solve number 2.arrow_forwardConstruct a know-show table of the proposition: For each integer n, n is even if and only if 4 divides n^2arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage