
Concept explainers
Use the Gauss-Seidel method(a) without relaxation and (b) with relaxation
(a)

To calculate: The solution of following system of equation with Gauss-Seidel method without relaxation to a tolerance of
Answer to Problem 13P
Solution:
Using Gauss-Seidel method three iterations are performed to get the values
Explanation of Solution
Given:
A system of equation:
With
Formula used:
(1) The values of
(2) Convergence can be checked using the criterion
For all i, where j and j- 1 are the present and previous iterations.
Calculation:
Consider the system of equation:
The sufficient condition for convergence is:
The diagonal coefficient in each of the equations must be larger than the sum of the absolute values of the other coefficients in the equation. The systems where this condition holds are called diagonally dominant.
Thus, the equations should first be arranged so that they are diagonally dominant.
It can be written in the form:
Where,
First, solve each of the equations for its unknown on the diagonal
For initial guess, assume
Thus, equation (1) becomes,
This value, along with the assumed value of
Now, substitute the calculated values of
For the second iteration, the same process is repeated with
The value of
Now, substitute the calculated values of
Now, the error can be computed as:
For the third iteration, the same process is repeated with
The value of
Now, substitute the calculated values of
Now, the error can be computed as:
Thus, after three iterations the maximum error is 2.92% which is less than
(b)

To calculate: The solution of following system of equation with Gauss-Seidel method with relaxation
Answer to Problem 13P
Solution:
Using Gauss-Seidel method six iterations are performed with relaxation
Explanation of Solution
Given:
A system of equation:
With relaxation
Formula used:
(1) The values of
(2) Relaxation
Where
(3) Convergence can be checked using the criterion
For all i, where j and j- 1 are the present and previous iterations.
Calculation:
Consider the system of equation:
The sufficient condition for convergence is:
The diagonal coefficient in each of the equations must be larger than the sum of the absolute values of the other coefficients in the equation. The systems where this condition holds are called diagonally dominant.
Thus, the equations should first be arranged so that they are diagonally dominant.
It can be written in the form:
Where,
First, solve each of the equations for its unknown on the diagonal
For initial guess, assume
Thus, equation (1) becomes,
Relaxation yields:
This value, along with the assumed value of
Relaxation yields:
Now, substitute the calculated values of
Relaxation yields:
For the second iteration, the same process is repeated with
Relaxation yields:
The value of
Relaxation yields:
Now, substitute the calculated values of
Relaxation yields:
Now, the error can be computed as:
For the third iteration, the same process is repeated with
Relaxation yields:
The value of
Relaxation yields:
Now, substitute the calculated values of
Relaxation yields:
Now, the error can be computed as:
The table showing values calculated for further iterations is given below
Therefore, after six iterations, the maximum error is 3.60% which is less than 5%. Thus, the results are
Want to see more full solutions like this?
Chapter 11 Solutions
Numerical Methods for Engineers
Additional Math Textbook Solutions
Calculus: Early Transcendentals (2nd Edition)
Precalculus: Mathematics for Calculus (Standalone Book)
Intro Stats, Books a la Carte Edition (5th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
College Algebra (7th Edition)
Probability And Statistical Inference (10th Edition)
- Find all solutions of the polynomial congruence x²+4x+1 = 0 (mod 143). (The solutions of the congruence x² + 4x+1=0 (mod 11) are x = 3,4 (mod 11) and the solutions of the congruence x² +4x+1 = 0 (mod 13) are x = 2,7 (mod 13).)arrow_forwardDetermine whether each function is an injection and determine whether each is a surjection.The notation Z_(n) refers to the set {0,1,2,...,n-1}. For example, Z_(4)={0,1,2,3}. f: Z_(6) -> Z_(6) defined by f(x)=x^(2)+4(mod6). g: Z_(5) -> Z_(5) defined by g(x)=x^(2)-11(mod5). h: Z*Z -> Z defined by h(x,y)=x+2y. j: R-{3} -> R defined by j(x)=(4x)/(x-3).arrow_forwardDetermine whether each function is an injection and determine whether each is a surjection.arrow_forward
- Let A = {a, b, c, d}, B = {a,b,c}, and C = {s, t, u,v}. Draw an arrow diagram of a function for each of the following descriptions. If no such function exists, briefly explain why. (a) A function f : AC whose range is the set C. (b) A function g: BC whose range is the set C. (c) A function g: BC that is injective. (d) A function j : A → C that is not bijective.arrow_forwardLet f:R->R be defined by f(x)=x^(3)+5.(a) Determine if f is injective. why?(b) Determine if f is surjective. why?(c) Based upon (a) and (b), is f bijective? why?arrow_forwardLet f:R->R be defined by f(x)=x^(3)+5.(a) Determine if f is injective.(b) Determine if f is surjective. (c) Based upon (a) and (b), is f bijective?arrow_forward
- 1 S 0 sin(lnx) x² - 1 Inx dxarrow_forward2 6. Modelling. Suppose that we have two tanks (A and B) between which a mixture of brine flows. Tank A contains 200 liters of water in which 50 kilograms of salt has been dissolved and Tank B contains 100 liters of pure water. Water containing 1kg of salt per liter is pumped into Tank A at the rate of 5 liters per minute. Brine mixture is pumped into Tank A from Tank B at the rate of 3 liters per minute and brine mixture is pumped from Tank A into Tank B at the rate of 8 liters per minute. Brine is drained from Tank B at a rate of 5 liters per minute. (a) Draw and carefully label a picture of the situation, including both tanks and the flow of brine between them. JankA 1ks of Salt Slits Pump EL Brine mit tark A from tank 13 Tank 13 k 3L zooliters of Ico liters of water with pure water. Saky salt → 777 disslore inside Brine mix is pumped from tank A to B of 82 Brine drainen min by Gf salt (b) Assume all brine mixtures are well-stirred. If we let t be the time in minutes, let x(t) 1ks…arrow_forwardNo chatgpt plsarrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
