
EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN
5th Edition
ISBN: 9781259151323
Author: CENGEL
Publisher: MCGRAW HILL BOOK COMPANY
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 1P
To determine
State the resultant hydrostatic force acting on the submerged surface. Also, define the center of pressure.
Expert Solution & Answer

Explanation of Solution
Resultant hydrostatic force:
The resultant of the pressure forces acting on the surface is called as the resultant hydrostatic force acting on the submerged surface. The resultant hydrostatic force on the submerged surface needs the computation of direction, magnitude, and line of action of the force.
Center of pressure:
Center of pressure is referred to as the point of application of the resultant hydrostatic force. It is also stated as the intersection point between the line of action of the resultant hydrostatic force and the surface. It is caused by the variation of the hydrostatic pressure.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
state is
Derive an expression for the volume expansivity of a substance whose equation of
RT
P
=
v-b
a
v(v + b)TZ
where a and b are empirical constants.
For a gas whose equation of state is P(v-b)=RT, the specified heat difference Cp-Cv
is equal to which of the following (show all work):
(a) R
(b) R-b
(c) R+b
(d) 0
(e) R(1+v/b)
of state is
Derive an expression for the specific heat difference of a substance whose equation
RT
P
=
v-b
a
v(v + b)TZ
where a and b are empirical constants.
Chapter 11 Solutions
EBK FUNDAMENTALS OF THERMAL-FLUID SCIEN
Ch. 11 - Prob. 1PCh. 11 - Someone claims that she can determine the...Ch. 11 - A submerged horizontal flat plate is suspended in...Ch. 11 - You may have noticed that dams are much thicker at...Ch. 11 - Consider a submerged curved surface. Explain how...Ch. 11 - Consider a submerged curved surface. Explain how...Ch. 11 - Consider a circular surface subjected to...Ch. 11 - Consider a heavy car submerged in water in a lake...Ch. 11 - Prob. 9PCh. 11 - Consider a 8-m-long, 8-m-wide, and 2-m-high...
Ch. 11 - Consider a 200-ft-high, 1200-ft-wide dam filled to...Ch. 11 - A room in the lower level of a cruise ship has a...Ch. 11 - The water side of the wall of a 70-m-long dam is a...Ch. 11 - For a gate width of 2 m into the paper (Fig....Ch. 11 - Determine the resultant force acting on the...Ch. 11 - A 6-m-high, 5-m-wide rectangular plate blocks the...Ch. 11 - The flow of water from a reservoir is controlled...Ch. 11 - Repeat Prob. 11–18E for a water height of 8...Ch. 11 - A water trough of semicircular cross section of...Ch. 11 - A cylindrical tank is fully filled with water...Ch. 11 - An open settling tank shown in the figure contains...Ch. 11 - From Prob. 11-22, knowing that the density of the...Ch. 11 - Prob. 24PCh. 11 - The two sides of a V-shaped water trough are...Ch. 11 - What is buoyant force? What causes it? What is the...Ch. 11 - Consider two identical spherical balls submerged...Ch. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - The volume and the average density of an...Ch. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - A 170-kg granite rock ( = 2700 kg/m3) is dropped...Ch. 11 - It is said that Archimedes discovered his...Ch. 11 - Prob. 40PCh. 11 - An air-conditioning system requires a 34-m-long...Ch. 11 - Prob. 42RQCh. 11 - Prob. 43RQCh. 11 - Prob. 45RQCh. 11 - Prob. 46RQCh. 11 - A semicircular 40-ft-diameter tunnel is to be...Ch. 11 - Prob. 48RQCh. 11 - Prob. 49RQCh. 11 - The average density of icebergs is about 917...Ch. 11 - Prob. 51RQCh. 11 - Prob. 52RQCh. 11 - Prob. 53RQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Temperature may alternatively be defined as T = ди v Prove that this definition reduces the net entropy change of two constant-volume systems filled with simple compressible substances to zero as the two systems approach thermal equilibrium.arrow_forwardUsing the Maxwell relations, determine a relation for equation of state is (P-a/v²) (v−b) = RT. Os for a gas whose av Tarrow_forward(◉ Homework#8arrow_forwardHomework#8arrow_forwardBox A has a mass of 15 kilograms and is attached to the 20 kilogram Box B using the cord and pulley system shown. The coefficient of kinetic friction between the boxes and surface is 0.2 and the moment of inertia of the pulley is 0.5 kg * m^ 2. After 2 seconds, how far do the boxes move? A бро Barrow_forwardBox A has a mass of 15 kilograms and is attached to the 20 kilogram Box B using the cord and pulley system shown. The coefficient of kinetic friction between the boxes and surface is 0.2 and the moment of inertia of the pulley is 0.5 kg * m^2. Both boxes are 0.25 m long and 0.25 m high. The cord is attached to the bottom of Box A and the middle of box B. After 2 seconds, how far do the boxes move? A From бро Barrow_forwardHomework#8arrow_forwardSign in PDF Lecture W09.pdf PDF MMB241 - Tutorial L9.pdf File C:/Users/KHULEKANI/Desktop/mmb241/MMB241%20-%20Tutorial%20L9.pdf II! Draw | I│Alla | Ask Copilot + of 4 D Topic: Kinetics of Particles: - Forces in dynamic system, Free body diagram, newton's laws of motion, and equations of motion. TQ1. The 10-kg block is subjected to the forces shown. In each case, determine its velocity when t=2s if v 0 when t=0 500 N F = (201) N 300 N (b) TQ2. The 10-kg block is subjected to the forces shown. In each case, determine its velocity at s-8 m if v = 3 m/s at s=0. Motion occurs to the right. 40 N F = (2.5 s) N 200 N 30 N (b) TQ3. Determine the initial acceleration of the 10-kg smooth collar. The spring has an unstretched length of 1 m. 1 σ Q ☆ Q 6 ا الى ☑arrow_forwardSign in PDF Lecture W09.pdf PDF MMB241 - Tutorial L9.pdf File C:/Users/KHULEKANI/Desktop/mmb241/MMB241%20-%20Tutorial%20L9.pdf II! Draw | I│Alla | Ask Copilot + 4 of 4 | D TQ9. If motor M exerts a force of F (10t 2 + 100) N determine the velocity of the 25-kg crate when t kinetic friction between the crate and the plane are μs The crate is initially at rest. on the cable, where t is in seconds, 4s. The coefficients of static and 0.3 and μk = 0.25, respectively. M 3 TQ10. The spring has a stiffness k = 200 N/m and is unstretched when the 25-kg block is at A. Determine the acceleration of the block when s = 0.4 m. The contact surface between the block and the plane is smooth. 0.3 m F= 100 N F= 100 N k = 200 N/m σ Q Q ☆ ا الى 6 ☑arrow_forwardmy ID# is 016948724 please solve this problem step by steparrow_forwardMY ID#016948724 please solve the problem step by spetarrow_forward1 8 4 For the table with 4×4 rows and columns as shown Add numbers so that the sum of any row or column equals .30 Use only these numbers: .1.2.3.4.5.6.10.11.12.12.13.14.14arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill EducationControl Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY