EBK FLUID MECHANICS
EBK FLUID MECHANICS
2nd Edition
ISBN: 8220106714287
Author: HIBBELER
Publisher: PEARSON
bartleby

Videos

Question
Book Icon
Chapter 11, Problem 1P
To determine

Critical transition distance.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

The free stream velocity of the oil (U) is 4 ft/s.

The temperature of the oil (T) is 68°F.

Calculation:

Consider the flow is steady and the kerosene is incompressible.

Refer Appendix A, “Physical Properties of Liquids at Standard Atmospheric Pressure 14.70 psi, and 68°F (FPS Units)”

The transition from a laminar boundary layer takes place at a critical Reynolds number (Rex)cr of 5×105.

The density of the kerosene (ρke) is 1.58 slug/ft3.

The kinematic viscosity (vke) is 25.4×106 ft2/s.

Write the Expression for the Reynolds numbers (Rex)cr in terms of specific weight.

  (Rex)cr=Uxcvke5×105=4 ft/s×xcr25.4×106 ft2/sxcr=3.175 ft

Thus, the critical distance for transition is 3.175 ft_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Temperature (°C) 100 4. Consider the solidification of a binary Pb-10%Sn alloy. Assume that during solidification, there is complete mixing in the liquid and no diffusion in the solid. Use the phase diagram below to answer the following question. (a) Draw (on the phase diagram) the compositions of the liquid and the solid at the interface as a function of temperature during solidification. (b) Illustrate on the phase diagram how one would calculate the volume fraction solidified at a given temperature. (c) (d) Indicate the temperature at which solidification is complete. Do you expect ẞ to be present in the as-cast microstructure? Explain 300 327°C 200 a (Pb) 20 20 a + L 18.3 183°C α + β 40 60 Composition (wt% Sn) Liquid 600 500 232°C B+L 400 B 61.9 97.8 300 808 100 (Sn) 200 100 Temperature (°F)
I tried this problem a couple of times and don't know where I'm going wrong can you help me out please
y(0)=1, Using Laplace transforms solve the following differential equations : 11) y"-4y+4y=0, 12) y+2y+2y=0, y(0)=2.1, y'(0) = 3.9 y'(0)=-3. 13) y+7y+12y=21e", y(0)=3.5, y'(0)=-10. 14) +9y=10e. y(0)=0, y'(0) = 0. 15) y+3y+2.25y=91³ +64, y(0)=1, y'(0) = 31.5 16) -6y+5y= 29 cos(21), y(0)=3.2, y'(0)=6.2 17) "+2y+2y=0, y(0)=0, y'(0)=1. 18) +2y+17y=0, y(0)=0, y'(0)=12. 19) y-4y+5y=0, y(0)=1, y'(0) = 2. 20) 9y-6y+y=0, y(0)=3, y'(0)=1. 21) -2y+10y=0, y(0)=3, y'(0)=3.

Chapter 11 Solutions

EBK FLUID MECHANICS

Ch. 11 - Prob. 11PCh. 11 - Air at 20°C is blowing at 2 m/s as it passes over...Ch. 11 - Prob. 13PCh. 11 - Water at 20°C has a free-stream velocity of 500...Ch. 11 - Air at a temperature of 60°F flows at 1.2 ft/s...Ch. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - Prob. 18PCh. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - Prob. 21PCh. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Prob. 30PCh. 11 - Prob. 31PCh. 11 - Prob. 32PCh. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Determine the disturbance thickness of the...Ch. 11 - Prob. 41PCh. 11 - Prob. 42PCh. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Prob. 50PCh. 11 - Determine the moment developed at the base A of...Ch. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - The truck has a drag coefficient of CD = 1.12 when...Ch. 11 - Prob. 58PCh. 11 - The motorcycle and passenger has a projected front...Ch. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65PCh. 11 - The uniform crate has a mass of 50 kg and rests on...Ch. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - A ball has a diameter of 40 mm and falls in honey...Ch. 11 - The blades of a mixer are used to stir a liquid...Ch. 11 - Prob. 71PCh. 11 - Prob. 72PCh. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - Prob. 77PCh. 11 - Prob. 78PCh. 11 - Prob. 79PCh. 11 - Prob. 81PCh. 11 - Prob. 82PCh. 11 - Prob. 83PCh. 11 - Prob. 84PCh. 11 - A 5-Mg airplane is flying at a speed of 60 m/s. If...Ch. 11 - Prob. 86PCh. 11 - Prob. 87PCh. 11 - Prob. 88PCh. 11 - Prob. 89PCh. 11 - Prob. 90PCh. 11 - Prob. 91PCh. 11 - The plane weighs 9000 lb and can take off from an...Ch. 11 - Prob. 93PCh. 11 - The 2000-lb airplane is flying at an altitude of...Ch. 11 - A 15,000-lb airplane has two wings, each having a...Ch. 11 - Prob. 96PCh. 11 - Prob. 97P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY