Interpretation:
The molecule that has a stronger force of attraction between ammonia and methylamine and the reasons for the same is to be determined. Also, based on the reasons, list the other experiment that is done with these molecules to test the same hypothesis is to be determined.
Conceptual introduction:
The force of attraction between the hydrogen and an electronegative atom is called hydrogen bonding.
The force of attraction between the same atoms of different molecules is called van der Waals force of attraction.
The force of attraction between the charged ion and a polar compound is called ionic-dipole interaction.
The force of attraction between the two polar compounds is called as dipole-dipole interaction.
To determine:
The molecule that has a stronger force of attraction from ammonia and methylamine and the reasons for the same.

Answer to Problem 1DE
Solution: The molecule that has a stronger force of attraction from ammonia and methylamine is methylamine and the reasons for the same are stated below.
Explanation of Solution
The force of attraction between the hydrogen and an electronegative atom is called hydrogen bonding.
Nitrogen is an electronegative atom compared to hydrogen. Therefore, there exist the hydrogen bonding interaction between the nitrogen of one ammonia molecule and the hydrogen of another ammonia molecule.
Thus, the liquification of ammonia gas is easier.
According to the given data, methylamine is liquefied more easily than ammonia, since, the boiling point of ammonia is less than that of methylamine.
Therefore, the interaction between the two methylamine molecules is stronger than that between two ammonia molecules.
The reason for this is that the interaction between the two methylamine molecules other than hydrogen bonding exist, that is, van der Waals forces. This is due to the hydrophobic regions of the two different molecules and the dipole-dipole interaction present between the carbon and the nitrogen atom in a molecule.
The solubility of a salt of methyl ammine is stronger than that of ammonia, since in methylammonium ion, the positive charge is stabilized by the positive inductive effect of the methyl group. This effect is absent in an ammonium ion.
The pKa of protonated ammonia and protonated methylamine is 9.26 and 10.66 , respectively.
Therefore, ammonia is less basic than methylamine. This is due to the inductive effect of methyl group that pushes electrons to extract a proton much easily. This effect is absent in ammonia.
Methylamine has stronger intermolecular force of attraction between its two molecule compared to that of ammonia.
Want to see more full solutions like this?
Chapter 11 Solutions
MAST F/ CHEM: THE CENTRAL SCI CODE ALON
- Please help me find the 1/Time, Log [I^-] Log [S2O8^2-], Log(time) on the data table. With calculation steps. And the average for runs 1a-1b. Please help me thanks in advance. Will up vote!arrow_forwardQ1: Answer the questions for the reaction below: ..!! Br OH a) Predict the product(s) of the reaction. b) Is the substrate optically active? Are the product(s) optically active as a mix? c) Draw the curved arrow mechanism for the reaction. d) What happens to the SN1 reaction rate in each of these instances: 1. Change the substrate to Br "CI 2. Change the substrate to 3. Change the solvent from 100% CH3CH2OH to 10% CH3CH2OH + 90% DMF 4. Increase the substrate concentration by 3-fold.arrow_forwardExperiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward
- (15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forwardQ7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forwardQ5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





