Physics
3rd Edition
ISBN: 9781259233616
Author: GIAMBATTISTA
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 1CQ
To determine
Whether the vibration of a string in piano, guitar or violin is a sound wave.
Expert Solution & Answer
Answer to Problem 1CQ
The vibration of either one is a sound wave.
Explanation of Solution
Generally waves are classified into two, one is transverse wave and another is longitudinal waves. In the case of transverse wave, the vibration (molecules) is perpendicular to the direction of propagation of the wave whereas the direction of propagation and vibration (molecules) are in same direction.
In this case, the vibration of the string in violin, piano and guitar produces transverse wave when the string plucked. It never produces longitudinal waves. These transverses wave would produce longitudinal wave in the air by facilitate to vibrate the air molecules.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Blue light has a wavelength of 485 nm. What is the frequency of a photon of blue light?
Question 13
Question 13
What is the wavelength of radiofrequency broadcast of 104 MHz?
Question 14
Question 14
1 Point
3. The output intensity from an x-ray exposure is 4 mGy at 90 cm. What will the intensity of the exposure be at 180 cm?
Question 15
Question 15
1 Point
What is the frequency of an 80 keV x-ray?
Under what condition is IA - BI = A + B?
Vectors
À
and
B
are in the same direction.
Vectors
À
and B
are in opposite directions.
The magnitude of vector
Vectors
À
and
官
B
is zero.
are in perpendicular directions.
For the vectors shown in the figure, express vector
3 in terms of vectors M and N.
M
S
=-M+ Ň
==
S=м- Ñ
S = M +Ñ
+N
Chapter 11 Solutions
Physics
Ch. 11.1 - Prob. 11.1CPCh. 11.2 - Prob. 11.2CPCh. 11.3 - Prob. 11.3CPCh. 11.3 - Prob. 11.1PPCh. 11.4 - Prob. 11.4CPCh. 11.5 - Prob. 11.5CPCh. 11.5 - Prob. 11.2PPCh. 11.6 - Prob. 11.3PPCh. 11.7 - Prob. 11.4PPCh. 11.8 - Prob. 11.5PP
Ch. 11.9 - Prob. 11.6PPCh. 11.9 - Prob. 11.9CPCh. 11.10 - Prob. 11.10CPCh. 11.10 - Prob. 11.7PPCh. 11 - Prob. 1CQCh. 11 - Prob. 2CQCh. 11 - Prob. 3CQCh. 11 - Prob. 4CQCh. 11 - Prob. 5CQCh. 11 - Prob. 6CQCh. 11 - Prob. 7CQCh. 11 - Prob. 8CQCh. 11 - Prob. 9CQCh. 11 - Prob. 10CQCh. 11 - Prob. 11CQCh. 11 - Prob. 1MCQCh. 11 - Prob. 2MCQCh. 11 - Prob. 3MCQCh. 11 - Prob. 4MCQCh. 11 - Prob. 5MCQCh. 11 - Prob. 6MCQCh. 11 - Prob. 7MCQCh. 11 - Prob. 8MCQCh. 11 - Prob. 9MCQCh. 11 - Prob. 10MCQCh. 11 - Prob. 11MCQCh. 11 - Prob. 1PCh. 11 - Prob. 2PCh. 11 - Prob. 3PCh. 11 - Prob. 4PCh. 11 - 5. At what rate does the jet airplane in Problem 4...Ch. 11 - Prob. 6PCh. 11 - Prob. 7PCh. 11 - Prob. 8PCh. 11 - Prob. 9PCh. 11 - Prob. 10PCh. 11 - 11. A metal guitar string has a linear mass...Ch. 11 - Prob. 12PCh. 11 - 13. Two strings, each 15.0 m long, are stretched...Ch. 11 - Prob. 14PCh. 11 - Prob. 15PCh. 11 - Prob. 16PCh. 11 - Prob. 17PCh. 11 - 18. The speed of sound in air at room temperature...Ch. 11 - Prob. 19PCh. 11 - Prob. 20PCh. 11 - 21. A fisherman notices a buoy bobbing up and down...Ch. 11 - Prob. 22PCh. 11 - Prob. 23PCh. 11 - Prob. 24PCh. 11 - Prob. 25PCh. 11 - Prob. 26PCh. 11 - Prob. 27PCh. 11 - Prob. 28PCh. 11 - Prob. 29PCh. 11 - Problems 30–32. The graphs show displacement y as...Ch. 11 - Prob. 31PCh. 11 - 32. Rank the waves in order of maximum transverse...Ch. 11 - Prob. 33PCh. 11 - Prob. 34PCh. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - Prob. 37PCh. 11 - Prob. 38PCh. 11 - Prob. 39PCh. 11 - Prob. 40PCh. 11 - Prob. 41PCh. 11 - 42. A traveling sine wave is the result of the...Ch. 11 - Prob. 43PCh. 11 - Prob. 44PCh. 11 - Prob. 45PCh. 11 - Prob. 46PCh. 11 - Prob. 47PCh. 11 - Prob. 48PCh. 11 - Prob. 49PCh. 11 - Prob. 50PCh. 11 - Prob. 51PCh. 11 - Prob. 52PCh. 11 - Prob. 53PCh. 11 - Prob. 54PCh. 11 - Prob. 55PCh. 11 - Prob. 56PCh. 11 - Prob. 57PCh. 11 - Prob. 58PCh. 11 - Prob. 59PCh. 11 - Prob. 60PCh. 11 - Prob. 61PCh. 11 - Prob. 62PCh. 11 - Prob. 63PCh. 11 - Prob. 64PCh. 11 - Prob. 65PCh. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - Prob. 69PCh. 11 - Prob. 70PCh. 11 - Prob. 71PCh. 11 - Prob. 72PCh. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - Prob. 76PCh. 11 - Prob. 77PCh. 11 - Prob. 78PCh. 11 - Prob. 79PCh. 11 - Prob. 80PCh. 11 - Prob. 81PCh. 11 - Prob. 82PCh. 11 - Prob. 83PCh. 11 - Prob. 84PCh. 11 - Prob. 85PCh. 11 - Prob. 86PCh. 11 - Prob. 87PCh. 11 - Prob. 88PCh. 11 - Prob. 89PCh. 11 - Prob. 90PCh. 11 - Prob. 91PCh. 11 - Prob. 92PCh. 11 - Prob. 93PCh. 11 - Prob. 94PCh. 11 - Prob. 95PCh. 11 - Prob. 96PCh. 11 - Prob. 97PCh. 11 - Prob. 98PCh. 11 - Prob. 99PCh. 11 - Prob. 100PCh. 11 - Prob. 101PCh. 11 - 102. A harpsichord string is made of yellow brass...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardIf A - B = 0, then the vectors A and B have equal magnitudes and are directed in the opposite directions from each other. True Falsearrow_forwardIf the eastward component of vector A is equal to the westward component of vector B and their northward components are equal. Which one of the following statements about these two vectors is correct? Vector À is parallel to vector B. Vectors À and point in opposite directions. VectorÀ is perpendicular to vector B. The magnitude of vector A is equal to the magnitude of vectorarrow_forward
- No chatgpt plsarrow_forwardConsider the situation in the figure below; a neutral conducting ball hangs from the ceiling by an insulating string, and a charged insulating rod is going to be placed nearby. A. First, if the rod was not there, what statement best describes the charge distribution of the ball? 1) Since it is a conductor, all the charges are on the outside of the ball. 2) The ball is neutral, so it has no positive or negative charges anywhere. 3) The positive and negative charges are separated from each other, but we don't know what direction the ball is polarized. 4) The positive and negative charges are evenly distributed everywhere in the ball. B. Now, when the rod is moved close to the ball, what happens to the charges on the ball? 1) There is a separation of charges in the ball; the side closer to the rod becomes positively charged, and the opposite side becomes negatively charged. 2) Negative charge is drawn from the ground (via the string), so the ball acquires a net negative charge. 3)…arrow_forwardanswer question 5-9arrow_forward
- AMPS VOLTS OHMS 5) 50 A 110 V 6) .08 A 39 V 7) 0.5 A 60 8) 2.5 A 110 Varrow_forwardThe drawing shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while surface (2) has an area of 3.90 m². The electric field in the drawing is uniform and has a magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle 8 made between the electric field with surface (2) is 30.0°. Solve in Nm²/C 1 Ө Surface 2 Surface 1arrow_forwardPROBLEM 5 What is the magnitude and direction of the resultant force acting on the connection support shown here? F₁ = 700 lbs F2 = 250 lbs 70° 60° F3 = 700 lbs 45° F4 = 300 lbs 40° Fs = 800 lbs 18° Free Body Diagram F₁ = 700 lbs 70° 250 lbs 60° F3= = 700 lbs 45° F₁ = 300 lbs 40° = Fs 800 lbs 18°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY