
Pearson eText Life in the Universe -- Instant Access (Pearson+)
4th Edition
ISBN: 9780135234457
Author: Jeffrey Bennett, Seth Shostak
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 18RQ
To determine
The way by which classification is useful for science. Also determine the reason classification scheme was discovered.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
In (Figure 1) C1 = 6.00 μF, C2 = 6.00 μF, C3 = 12.0 μF, and C4 = 3.00 μF. The capacitor network is connected to an applied potential difference Vab. After the charges on the capacitors have reached their final values, the voltage across C3 is 40.0 V. What is the voltage across C4? What is the voltage Vab applied to the network? Please explain everything in steps.
I need help with these questions again. A step by step working out with diagrams that explains more clearly
In a certain region of space the electric potential is given by V=+Ax2y−Bxy2, where A = 5.00 V/m3 and B = 8.00 V/m3. Calculate the direction angle of the electric field at the point in the region that has cordinates x = 2.50 m, y = 0.400 m, and z = 0. Please explain. The answer is not 60, 120, or 30.
Chapter 11 Solutions
Pearson eText Life in the Universe -- Instant Access (Pearson+)
Ch. 11 - Prob. 1RQCh. 11 - Prob. 2RQCh. 11 - Prob. 3RQCh. 11 - How do habitable zones differ among stars of...Ch. 11 - Briefly describe the conditions under which...Ch. 11 - Why are extrasolar planets hard to detect...Ch. 11 - Briefly describe the astrometric, Doppler, and...Ch. 11 - Briefly summarize the planetary properties we can...Ch. 11 - Why does the Doppler method generally allow us to...Ch. 11 - How does the transit method tell us planetary...
Ch. 11 - How do the orbits of known extrasolar planets...Ch. 11 - Summarize the key features shown in Figure 11.20,...Ch. 11 - According to current statistics, how common arc...Ch. 11 - What types of worlds seem most likely to support...Ch. 11 - How might a stars habitable zone be wider than we...Ch. 11 - How might future imagery and spectroscopy allow us...Ch. 11 - Prob. 17RQCh. 11 - Prob. 18RQCh. 11 - What is the HertzsprungRussell diagram? How does a...Ch. 11 - Prob. 20RQCh. 11 - Date: February 16, 2025. Headline: Astronomers...Ch. 11 - Prob. 22TYUCh. 11 - Date: June 19, 2028. Headline: Spectrum Reveals...Ch. 11 - Date: November 7, 2020. Headline: New Images Show...Ch. 11 - Date: November 7, 2050. Headline: New Images Show...Ch. 11 - Date: July 20, 2020. Headline: Giant Planet Found...Ch. 11 - Date: September 15, 2045. Headline: Sun-Like Star...Ch. 11 - Prob. 28TYUCh. 11 - Date: December 13, 2033. Headline: Orphan Planet...Ch. 11 - Prob. 30TYUCh. 11 - Prob. 31TYUCh. 11 - Prob. 32TYUCh. 11 - Which method could detect a planet in an orbit...Ch. 11 - To determine a planets average density, we can use...Ch. 11 - Based on the model types shown in Figure 11.20, a...Ch. 11 - According to current statistics, about what...Ch. 11 - The term super-Earth means a planet that is (a)...Ch. 11 - Our best hope for determining that life exists on...Ch. 11 - Jupiter has had an important effect on life on...Ch. 11 - Prob. 40TYUCh. 11 - Prob. 41POSCh. 11 - Unanswered Questions. As discussed in this...Ch. 11 - Explaining the Doppler Method. Explain how the...Ch. 11 - Explaining the Transit Method. Explain how the...Ch. 11 - Comparing Methods. What are the strengths and...Ch. 11 - Super-Earth. Youve discovered a super-Earth...Ch. 11 - Stars with Habitable Planets. Based on what youve...Ch. 11 - Are Earth-Like Planets Common? Based on what you...Ch. 11 - Prob. 50IFCh. 11 - Science Fiction Planet. Choose one fictional...Ch. 11 - Number of Stars with Habitable Planets. Assume...Ch. 11 - Prob. 54IFCh. 11 - Finding Orbit Sizes. The Doppler method allows us...Ch. 11 - Finding a Planetary Mass. Using the Doppler...Ch. 11 - Transit of TrES-1. The planet TrES-1, orbiting a...Ch. 11 - The Doppler Formula. The amount of Doppler shift...Ch. 11 - Prob. 59IFCh. 11 - Future Mission. Imagine that a wealthy benefactor...Ch. 11 - Is It Worth It? Thanks to rapidly advancing...Ch. 11 - Prob. 62IFCh. 11 - Extrasolar Planet Mission. Learn about a proposed...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An infinitely long line of charge has linear charge density 4.00×10−12 C/m . A proton (mass 1.67×10−−27 kg, charge +1.60×10−19 C) is 18.0 cm from the line and moving directly toward the line at 4.10×103 m/s . How close does the proton get to the line of charge?arrow_forwardat a certain location the horizontal component of the earth’s magnetic field is 2.5 x 10^-5 T due north A proton moves eastward with just the right speed so the magnetic force on it balances its weight. Find the speed of the proton.arrow_forwardExample In Canada, the Earth has B = 0.5 mT, pointing north, 70.0° below the horizontal. a) Find the magnetic force on an oxygen ion (O) moving due east at 250 m/s b) Compare the |FB| to |FE| due to Earth's fair- weather electric field (150 V/m downward).arrow_forward
- Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 2.20 µC, and L = 0.810 m). Calculate the total electric force on the 7.00-µC charge. What is the magnitude , what is the direction?arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 9.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol. (b) Imagine adding electrons to the pin until the negative charge has the very large value 2.00 mC. How many electrons are added for every 109 electrons already present?arrow_forward(a) Calculate the number of electrons in a small, electrically neutral silver pin that has a mass of 13.0 g. Silver has 47 electrons per atom, and its molar mass is 107.87 g/mol.arrow_forward
- 8 Two moving charged particles exert forces on each other because each creates a magnetic field that acts on the other. These two "Lorentz" forces are proportional to vix (2 xr) and 2 x (vi x-r), where is the vector between the particle positions. Show that these two forces are equal and opposite in accordance with Newton's third law if and only if rx (vi × 2) = 0.arrow_forward6 The force = +3 + 2k acts at the point (1, 1, 1). Find the torque of the force about (a) (b) the point (2, -1, 5). Careful about the direction of ŕ between the two points. the line = 21-+5k+ (i-+2k)t. Note that the line goes through the point (2, -1, 5).arrow_forward5 Find the total work done by forces A and B if the object undergoes the displacement C. Hint: Can you add the two forces first?arrow_forward
- 1 F2 F₁ -F₁ F6 F₂ S A Work done on the particle as it moves through the displacement is positive. True False by the force Farrow_forwardA student measuring the wavelength produced by a vapour lamp directed the lightthrough two slits with a separation of 0.20 mm. An interference pattern was created on the screen,3.00 m away. The student found that the distance between the first and the eighth consecutive darklines was 8.0 cm. Draw a quick picture of the setup. What was the wavelength of the light emittedby the vapour lamp?arrow_forwardA ball is tied to one end of a string. The other end of the string is fixed. The ball is set in motion around a vertical circle without friction. At the top of the circle, the ball has a speed of ; = √√ Rg, as shown in the figure. At what angle should the string be cut so that the ball will travel through the center of the circle? The path after string is cut Rarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning



Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax

Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning