FUND.OF PHYSICS
FUND.OF PHYSICS
11th Edition
ISBN: 9781119306887
Author: Halliday
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 11, Problem 18P
To determine

To find:

(a) Acceleration during fall and

(b) Acceleration during rise.

(c) Tension in cord

(d) Is the tension near limit of 52kN

(e) Magnitude of acceleration for scaled-up version of yo-yo

(f) Effect of scaled-up version of cord on tension

Blurred answer
Students have asked these similar questions
You are working with a team that is designing a new roller coaster-type amusement park ride for a major theme park. You are present for the testing of the ride, in which an empty 150 kg car is sent along the entire ride. Near the end of the ride, the car is at near rest at the top of a 100 m tall track. It then enters a final section, rolling down an undulating hill to ground level. The total length of track for this final section from the top to the ground is 250 m. For the first 230 m, a constant friction force of 370 N acts from computer-controlled brakes. For the last 20 m, which is horizontal at ground level, the computer increases the friction force to a value required for the speed to be reduced to zero just as the car arrives at the point on the track at which the passengers exit. (a) Determine the required constant friction force (in N) for the last 20 m for the empty test car. Write AK + AU + AE int = W+Q + TMW + TMT + TET + TER for the car-track-Earth system and solve for…
= 12 kg, and m3 Three objects with masses m₁ = 3.8 kg, m₂ find the speed of m3 after it moves down 4.0 m. m/s 19 kg, respectively, are attached by strings over frictionless pulleys as indicated in the figure below. The horizontal surface exerts a force of friction of 30 N on m2. If the system is released from rest, use energy concepts to m m2 m3 i
Three objects with masses m₁ = 3.8 kg, m₂ = 12 kg, and m 19 kg, respectively, are attached by strings over frictionless pulleys as indicated in the figure below. The horizontal surface exerts a force of friction of 30 N on m2. If the system is released from rest, use energy concepts to find the speed of m¸ after it moves down 4.0 m. m/s m m2 mg

Chapter 11 Solutions

FUND.OF PHYSICS

Ch. 11 - A cannonball and a marble roll smoothly from rest...Ch. 11 - Prob. 12QCh. 11 - A car travels at 80 km/h on a level road in the...Ch. 11 - An automobile traveling at 80.0 km/h has tires of...Ch. 11 - Prob. 3PCh. 11 - A uniform solid sphere rolls down an incline. a...Ch. 11 - ILW A 1000 kg car has four 10 kg wheels. When the...Ch. 11 - Figure 11-30 gives the speed v versus time t for a...Ch. 11 - ILW In Fig. 11-31, a solid cylinder of radius 10cm...Ch. 11 - Figure 11-32 shows the potential energy Ux of a...Ch. 11 - GO In Fig. 11-33, a solid ball rolls smoothly from...Ch. 11 - A hollow sphere of radius 0.15 m, with rotational...Ch. 11 - In Fig. 11-34, a constant horizontal force Fapp of...Ch. 11 - GO In Fig. 11-35, a solid brass ball of mass 0.280...Ch. 11 - GO Nonuniform ball. In Fig. 11-36, a ball of mass...Ch. 11 - In Fig. 11-37, a small, solid, uniform ball is to...Ch. 11 - GO A bowler throws a bowling ball of radius R = 11...Ch. 11 - GO Nonuniform cylindrical object. In Fig. 11-39, a...Ch. 11 - SSM A yo-yo has a rotational inertia of 950 gcm2...Ch. 11 - Prob. 18PCh. 11 - In unit-vector notation, what is the net torque...Ch. 11 - A plum is located at coordinates 2.0 m, 0, 4.0 m....Ch. 11 - In unit-vector notation, what is the torque about...Ch. 11 - A particle moves through an xyz coordinate system...Ch. 11 - Force F=(2.0N)i(3.0N)k acts on a pebble with...Ch. 11 - In unit-vector notation, what is the torque about...Ch. 11 - SSM Force F=(8.0N)i+(6.0N)j acts on a particle...Ch. 11 - At the instant of Fig. 11-40, a 2.0 kg particle P...Ch. 11 - SSM At one instant, force F=4.0N acts on a 0.25 kg...Ch. 11 - A 2.0 kg particle-like object moves in a plant...Ch. 11 - ILW In the instant of Fig, 11-41, two particles...Ch. 11 - At the instant the displacement of a 2.00 kg...Ch. 11 - In Fig. 11-42, a 0.400 kg ball is shot directly...Ch. 11 - A particle is acted on by two torques about the...Ch. 11 - Prob. 33PCh. 11 - A particle is to move in an xy plane, clockwise...Ch. 11 - Prob. 35PCh. 11 - Prob. 36PCh. 11 - GO In Fig. 11-44, three particles of mass m = 23 g...Ch. 11 - A sanding disk with rotational inertia 1.2 103...Ch. 11 - SSM The angular momentum of a flywheel having a...Ch. 11 - A disk with a rotational inertia of 7.00 kgm2...Ch. 11 - GO Figure 11-45 shows a rigid structure consisting...Ch. 11 - Figure 11-46 gives the torque that acts on an...Ch. 11 - Prob. 43PCh. 11 - A Texas cockroach of mass 0.17 kg runs...Ch. 11 - SSM WWW A man stands on a platform that is...Ch. 11 - The rotational inertia of a collapsing spinning...Ch. 11 - SSM A track is mounted on a large wheel that is...Ch. 11 - A Texas cockroach walks from the center of a...Ch. 11 - Two disks are mounted like a merry-go-round on...Ch. 11 - The rotor of an electric motor has rotational...Ch. 11 - SSM ILW A wheel is rotating freely at angular...Ch. 11 - GO A cockroach of mass m lies on the rim of a...Ch. 11 - GO In Fig. 11-50 an overhead view, a uniform thin...Ch. 11 - GO Figure 11-51 shows an overhead view of a ring...Ch. 11 - A horizontal vinyl record of mass 0.10 kg and...Ch. 11 - In a long jump, an athlete leaves the ground with...Ch. 11 - A uniform disk of mass 10m and radius 3.0r can...Ch. 11 - A horizontal platform in the shape of a circular...Ch. 11 - Figure 11-52 is an overhead view of a thin uniform...Ch. 11 - In Fig. 11-53, a 1.0 g bullet is tired into a 0.50...Ch. 11 - The uniform rod length 0.60 m, mass 1.0 kg in Fig....Ch. 11 - GO During a jump to his partner, an aerialist is...Ch. 11 - GO In Fig. 11-56, a 30 kg child stands on the edge...Ch. 11 - A ballerina begins a tour jet Fig. 11-19a with...Ch. 11 - SSM WWW Two 2.00 kg balls are attached to the ends...Ch. 11 - Prob. 66PCh. 11 - Prob. 67PCh. 11 - Prob. 68PCh. 11 - A certain gyroscope consists of a uniform disk...Ch. 11 - A uniform solid ball rolls smoothly along a floor,...Ch. 11 - SSM In Fig. 11-60, a constant horizontal force...Ch. 11 - A thin-walled pipe rolls along the floor. What is...Ch. 11 - Prob. 73PCh. 11 - Prob. 74PCh. 11 - Prob. 75PCh. 11 - A uniform block of granite in the shape of a book...Ch. 11 - SSM Two particles, each of mass 2.90 104 kg and...Ch. 11 - A wheel of radius 0.250 m, moving initially al...Ch. 11 - Wheels A and B in Fig. 11-61 are connected by a...Ch. 11 - Prob. 80PCh. 11 - SSM A uniform wheel of mass 10.0 kg and radius...Ch. 11 - A uniform rod rotates in a horizontal plane about...Ch. 11 - A solid sphere of weight 36.0 N rolls up an...Ch. 11 - Suppose that the yo-yo in Problem 17, instead of...Ch. 11 - A girl of mass M stands on the rim of a...Ch. 11 - Prob. 86P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License