
Modified MasteringAstronomy with Pearson eText -- ValuePack Access Card -- for Life in the Universe
4th Edition
ISBN: 9780134081632
Author: Bennett
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 17RQ
To determine
The Rare earth hypothesis and summarize the arguments and counterarguments of this hypothesis.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
What is the error determined by the 2/3 rule?
Your colleague gives you a sample that are supposed to consist of Pt-Ni
nanoparticles, TiO2 nanorod arrays, and SiO2 monolith plates (see right panel
schematic). The bimetallic Pt-Ni nanoparticles are expected to decorate on
the side surfaces of the aligned TiO2 nanorod arrays. These aligned TiO2
nanoarrays grew on the flat SiO2 monolith. Let's assume that the sizes of the
Pt-Ni nanoparticles are > 10 nm. We further assume that you have access to
a modern SEM that can produce a probe size as small as 1 nm with a current
as high as 1 nA. You are not expected to damage/destroy the sample. Hint:
keep your answers concise and to the point.
TiO₂ Nanorods
SiO, monolith
a) What do you plan to do if your colleague wants to know if the Pt and Ni formed uniform alloy
nanoparticles? (5 points)
b) If your colleague wants to know the spatial distribution of the PtNi nanoparticles with respect to
the TiO2 nanoarrays, how do you accomplish such a goal? (5 points)
c) Based on the experimental results…
Find the current in 5.00 and 7.00 Ω resistors. Please explain all reasoning
Chapter 11 Solutions
Modified MasteringAstronomy with Pearson eText -- ValuePack Access Card -- for Life in the Universe
Ch. 11 - Prob. 1RQCh. 11 - Prob. 2RQCh. 11 - Prob. 3RQCh. 11 - How do habitable zones differ among stars of...Ch. 11 - Briefly describe the conditions under which...Ch. 11 - Why are extrasolar planets hard to detect...Ch. 11 - Briefly describe the astrometric, Doppler, and...Ch. 11 - Briefly summarize the planetary properties we can...Ch. 11 - Why does the Doppler method generally allow us to...Ch. 11 - How does the transit method tell us planetary...
Ch. 11 - How do the orbits of known extrasolar planets...Ch. 11 - Summarize the key features shown in Figure 11.20,...Ch. 11 - According to current statistics, how common arc...Ch. 11 - What types of worlds seem most likely to support...Ch. 11 - How might a stars habitable zone be wider than we...Ch. 11 - How might future imagery and spectroscopy allow us...Ch. 11 - Prob. 17RQCh. 11 - Prob. 18RQCh. 11 - What is the HertzsprungRussell diagram? How does a...Ch. 11 - Prob. 20RQCh. 11 - Date: February 16, 2025. Headline: Astronomers...Ch. 11 - Prob. 22TYUCh. 11 - Date: June 19, 2028. Headline: Spectrum Reveals...Ch. 11 - Date: November 7, 2020. Headline: New Images Show...Ch. 11 - Date: November 7, 2050. Headline: New Images Show...Ch. 11 - Date: July 20, 2020. Headline: Giant Planet Found...Ch. 11 - Date: September 15, 2045. Headline: Sun-Like Star...Ch. 11 - Prob. 28TYUCh. 11 - Date: December 13, 2033. Headline: Orphan Planet...Ch. 11 - Prob. 30TYUCh. 11 - Prob. 31TYUCh. 11 - Prob. 32TYUCh. 11 - Which method could detect a planet in an orbit...Ch. 11 - To determine a planets average density, we can use...Ch. 11 - Based on the model types shown in Figure 11.20, a...Ch. 11 - According to current statistics, about what...Ch. 11 - The term super-Earth means a planet that is (a)...Ch. 11 - Our best hope for determining that life exists on...Ch. 11 - Jupiter has had an important effect on life on...Ch. 11 - Prob. 40TYUCh. 11 - Prob. 41POSCh. 11 - Unanswered Questions. As discussed in this...Ch. 11 - Explaining the Doppler Method. Explain how the...Ch. 11 - Explaining the Transit Method. Explain how the...Ch. 11 - Comparing Methods. What are the strengths and...Ch. 11 - Super-Earth. Youve discovered a super-Earth...Ch. 11 - Stars with Habitable Planets. Based on what youve...Ch. 11 - Are Earth-Like Planets Common? Based on what you...Ch. 11 - Prob. 50IFCh. 11 - Science Fiction Planet. Choose one fictional...Ch. 11 - Number of Stars with Habitable Planets. Assume...Ch. 11 - Prob. 54IFCh. 11 - Finding Orbit Sizes. The Doppler method allows us...Ch. 11 - Finding a Planetary Mass. Using the Doppler...Ch. 11 - Transit of TrES-1. The planet TrES-1, orbiting a...Ch. 11 - The Doppler Formula. The amount of Doppler shift...Ch. 11 - Prob. 59IFCh. 11 - Future Mission. Imagine that a wealthy benefactor...Ch. 11 - Is It Worth It? Thanks to rapidly advancing...Ch. 11 - Prob. 62IFCh. 11 - Extrasolar Planet Mission. Learn about a proposed...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Find the amplitude, wavelength, period, and the speed of the wave.arrow_forwardA long solenoid of length 6.70 × 10-2 m and cross-sectional area 5.0 × 10-5 m² contains 6500 turns per meter of length. Determine the emf induced in the solenoid when the current in the solenoid changes from 0 to 1.5 A during the time interval from 0 to 0.20 s. Number Unitsarrow_forwardA coat hanger of mass m = 0.255 kg oscillates on a peg as a physical pendulum as shown in the figure below. The distance from the pivot to the center of mass of the coat hanger is d = 18.0 cm and the period of the motion is T = 1.37 s. Find the moment of inertia of the coat hanger about the pivot.arrow_forward
- Review Conceptual Example 3 and the drawing as an aid in solving this problem. A conducting rod slides down between two frictionless vertical copper tracks at a constant speed of 3.9 m/s perpendicular to a 0.49-T magnetic field. The resistance of th rod and tracks is negligible. The rod maintains electrical contact with the tracks at all times and has a length of 1.4 m. A 1.1-Q resistor is attached between the tops of the tracks. (a) What is the mass of the rod? (b) Find the change in the gravitational potentia energy that occurs in a time of 0.26 s. (c) Find the electrical energy dissipated in the resistor in 0.26 s.arrow_forwardA camera lens used for taking close-up photographs has a focal length of 21.5 mm. The farthest it can be placed from the film is 34.0 mm. (a) What is the closest object (in mm) that can be photographed? 58.5 mm (b) What is the magnification of this closest object? 0.581 × ×arrow_forwardGiven two particles with Q = 4.40-µC charges as shown in the figure below and a particle with charge q = 1.40 ✕ 10−18 C at the origin. (Note: Assume a reference level of potential V = 0 at r = ∞.) Three positively charged particles lie along the x-axis of the x y coordinate plane.Charge q is at the origin.Charge Q is at (0.800 m, 0).Another charge Q is at (−0.800 m, 0).(a)What is the net force (in N) exerted by the two 4.40-µC charges on the charge q? (Enter the magnitude.) N(b)What is the electric field (in N/C) at the origin due to the two 4.40-µC particles? (Enter the magnitude.) N/C(c)What is the electrical potential (in kV) at the origin due to the two 4.40-µC particles? kV(d)What If? What would be the change in electric potential energy (in J) of the system if the charge q were moved a distance d = 0.400 m closer to either of the 4.40-µC particles?arrow_forward
- (a) Where does an object need to be placed relative to a microscope in cm from the objective lens for its 0.500 cm focal length objective to produce a magnification of -25? (Give your answer to at least three decimal places.) 0.42 × cm (b) Where should the 5.00 cm focal length eyepiece be placed in cm behind the objective lens to produce a further fourfold (4.00) magnification? 15 × cmarrow_forwardIn a LASIK vision correction, the power of a patient's eye is increased by 3.10 D. Assuming this produces normal close vision, what was the patient's near point in m before the procedure? (The power for normal close vision is 54.0 D, and the lens-to-retina distance is 2.00 cm.) 0.98 x marrow_forwardDon't use ai to answer I will report you answerarrow_forward
- A shopper standing 2.00 m from a convex security mirror sees his image with a magnification of 0.200. (Explicitly show on paper how you follow the steps in the Problem-Solving Strategy for mirrors found on page 1020. Your instructor may ask you to turn in this work.) (a) Where is his image (in m)? (Use the correct sign.) -0.4 m in front of the mirror ▾ (b) What is the focal length (in m) of the mirror? -0.5 m (c) What is its radius of curvature (in m)? -1.0 marrow_forwardAn amoeba is 0.309 cm away from the 0.304 cm focal length objective lens of a microscope.arrow_forwardTwo resistors of resistances R1 and R2, with R2>R1, are connected to a voltage source with voltage V0. When the resistors are connected in series, the current is Is. When the resistors are connected in parallel, the current Ip from the source is equal to 10Is. Let r be the ratio R1/R2. Find r. I know you have to find the equations for V for both situations and relate them, I'm just struggling to do so. Please explain all steps, thank you.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning

Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning



Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning