
Thomas' Calculus (14th Edition)
14th Edition
ISBN: 9780134438986
Author: Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 14AAE
To determine
To draw: The graph of given equation
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz).
Ꮖ
(a) (4 points) Show that V x F = 0.
(b) (4 points) Find a potential f for the vector field F.
(c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use
Stokes' Theorem to calculate the line integral
Jos
F.ds;
as denotes the boundary of S. Explain your answer.
(3) (16 points) Consider
z = uv,
u = x+y,
v=x-y.
(a) (4 points) Express z in the form z = fog where g: R² R² and f: R² →
R.
(b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate
steps otherwise no credit.
(c) (4 points) Let S be the surface parametrized by
T(x, y) = (x, y, ƒ (g(x, y))
(x, y) = R².
Give a parametric description of the tangent plane to S at the point p = T(x, y).
(d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic
approximation) of F = (fog) at a point (a, b). Verify that
Q(x,y) F(a+x,b+y).
=
(6) (8 points) Change the order of integration and evaluate
(z +4ry)drdy .
So S√ ²
0
Chapter 11 Solutions
Thomas' Calculus (14th Edition)
Ch. 11.1 - Finding Cartesian from Parametric...Ch. 11.1 - Finding Cartesian from Parametric...Ch. 11.1 - Prob. 3ECh. 11.1 - Prob. 4ECh. 11.1 - Prob. 5ECh. 11.1 - Prob. 6ECh. 11.1 - Prob. 7ECh. 11.1 - Prob. 8ECh. 11.1 - Prob. 9ECh. 11.1 - Finding Cartesian from Parametric...
Ch. 11.1 - Prob. 11ECh. 11.1 - Finding Cartesian from Parametric...Ch. 11.1 - Prob. 13ECh. 11.1 - Finding Cartesian from Parametric...Ch. 11.1 - Prob. 15ECh. 11.1 - Prob. 16ECh. 11.1 - Finding Cartesian from Parametric...Ch. 11.1 - Finding Cartesian from Parametric...Ch. 11.1 - In Exercises 19–24, match the parametric equations...Ch. 11.1 - In Exercises 19–24, match the parametric equations...Ch. 11.1 - In Exercises 19–24, match the parametric equations...Ch. 11.1 - In Exercises 19–24, match the parametric equations...Ch. 11.1 - In Exercises 19–24, match the parametric equations...Ch. 11.1 - In Exercises 19–24, match the parametric equations...Ch. 11.1 - In Exercises 25–28, use the given graphs of x =...Ch. 11.1 - In Exercises 25–28, use the given graphs of x =...Ch. 11.1 - In Exercises 25–28, use the given graphs of x =...Ch. 11.1 - In Exercises 25–28, use the given graphs of x =...Ch. 11.1 - Finding Parametric Equations
Find parametric...Ch. 11.1 - Find parametric equations and a parameter interval...Ch. 11.1 - In Exercises 31–36, find a parametrization for the...Ch. 11.1 - In Exercises 31–36, find a parametrization for the...Ch. 11.1 - In Exercises 31–36, find a parametrization for the...Ch. 11.1 - In Exercises 31–36, find a parametrization for the...Ch. 11.1 - In Exercises 31-36, find a parametrization for the...Ch. 11.1 - In Exercises 31-36, find a parametrization for the...Ch. 11.1 - Find parametric equations and a parameter interval...Ch. 11.1 - Find parametric equations and a parameter interval...Ch. 11.1 - Find parametric equations for the...Ch. 11.1 - Find parametric equations tor the circle
using as...Ch. 11.1 - Find a parametrization for the line segment...Ch. 11.1 - Find a parametrization for the curve with...Ch. 11.1 - Find a parametrization for the circle (x − 2)2 +...Ch. 11.1 - Find a parametrization for the circle x2 + y2 = 1...Ch. 11.1 - The witch of Maria Agnesi The bell-shaped witch of...Ch. 11.1 - Hypocycloid When a circle rolls on the inside of a...Ch. 11.1 - Prob. 47ECh. 11.1 - Trochoids A wheel of radius a rolls along a...Ch. 11.1 - Find the point on the parabola x = t, y = t2, −∞ <...Ch. 11.1 - Find the point on the ellipse x = 2 cos t, y = sin...Ch. 11.1 - Prob. 51ECh. 11.1 - Prob. 52ECh. 11.1 - Prob. 53ECh. 11.1 - If you have a parametric equation grapher, graph...Ch. 11.1 - Deltoid
x = 2 cos t + cos 2t, y = 2 sin t − sin...Ch. 11.1 - Prob. 56ECh. 11.1 - a. Epicycloid
x = 9 cos t − cos 9t, y = 9 sin t −...Ch. 11.1 - a. x = 6 cos t + 5 cos 3t, y = 6 sin t − 5 sin...Ch. 11.2 - In Exercises 1–14, find an equation for the line...Ch. 11.2 - In Exercises 1–14, find an equation for the line...Ch. 11.2 - In Exercises 1–14, find an equation for the line...Ch. 11.2 - In Exercises 1–14, find an equation for the line...Ch. 11.2 - In Exercises 1–14, find an equation for the line...Ch. 11.2 - In Exercises 1–14, find an equation for the line...Ch. 11.2 - In Exercises 1–14, find an equation for the line...Ch. 11.2 - In Exercises 1–14, find an equation for the line...Ch. 11.2 - In Exercises 1–14, find an equation for the line...Ch. 11.2 - In Exercises 1–14, find an equation for the line...Ch. 11.2 - Prob. 11ECh. 11.2 - In Exercises 1–14, find an equation for the line...Ch. 11.2 - Prob. 13ECh. 11.2 - In Exercises 1–14, find an equation for the line...Ch. 11.2 - Assuming that the equations in Exercises 15–20...Ch. 11.2 - Assuming that the equations in Exercises 15–20...Ch. 11.2 - Assuming that the equations in Exercises 15–20...Ch. 11.2 - Assuming that the equations in Exercises 15–20...Ch. 11.2 - Assuming that the equations in Exercises 15–20...Ch. 11.2 - Assuming that the equations in Exercises 15–20...Ch. 11.2 - Find the area under one arch of the cycloid
Ch. 11.2 - Find the area enclosed by the y-axis and the...Ch. 11.2 - Find the area enclosed by the ellipse
Ch. 11.2 - Find the area under y = x3 over [0, 1] using the...Ch. 11.2 - Find the lengths of the curves in Exercises...Ch. 11.2 - Find the lengths of the curves in Exercises...Ch. 11.2 - Find the lengths of the curves in Exercises...Ch. 11.2 - Find the lengths of the curves in Exercises...Ch. 11.2 - Find the lengths of the curves in Exercises...Ch. 11.2 - Find the lengths of the curves in Exercises...Ch. 11.2 - Find the areas of the surfaces generated by...Ch. 11.2 - Prob. 32ECh. 11.2 - Find the areas of the surfaces generated by...Ch. 11.2 - Prob. 34ECh. 11.2 - Prob. 35ECh. 11.2 - Prob. 36ECh. 11.2 - Prob. 37ECh. 11.2 - Prob. 38ECh. 11.2 - Prob. 39ECh. 11.2 - Prob. 40ECh. 11.2 - Length is independent of parametrization To...Ch. 11.2 - Prob. 42ECh. 11.2 - The curve with parametric equations
is called a...Ch. 11.2 - Prob. 44ECh. 11.2 - Prob. 45ECh. 11.2 - Prob. 46ECh. 11.2 - Prob. 47ECh. 11.2 - Prob. 48ECh. 11.2 - Prob. 49ECh. 11.2 - Prob. 50ECh. 11.3 - Prob. 1ECh. 11.3 - Prob. 2ECh. 11.3 - Prob. 3ECh. 11.3 - Prob. 4ECh. 11.3 - Prob. 5ECh. 11.3 - Prob. 6ECh. 11.3 - Prob. 7ECh. 11.3 - Prob. 8ECh. 11.3 - Prob. 9ECh. 11.3 - Find the polar coordinates, and , of the...Ch. 11.3 - Prob. 11ECh. 11.3 - Prob. 12ECh. 11.3 - Prob. 13ECh. 11.3 - Prob. 14ECh. 11.3 - Prob. 15ECh. 11.3 - Prob. 16ECh. 11.3 - Prob. 17ECh. 11.3 - Prob. 18ECh. 11.3 - Prob. 19ECh. 11.3 - Prob. 20ECh. 11.3 - Prob. 21ECh. 11.3 - Prob. 22ECh. 11.3 - Prob. 23ECh. 11.3 - Prob. 24ECh. 11.3 - Prob. 25ECh. 11.3 - Prob. 26ECh. 11.3 - Replace the polar equations in Exercises 27–52...Ch. 11.3 - Prob. 28ECh. 11.3 - Prob. 29ECh. 11.3 - Prob. 30ECh. 11.3 - Replace the polar equations in Exercises 27–52...Ch. 11.3 - Prob. 32ECh. 11.3 - Prob. 33ECh. 11.3 - Replace the polar equations in Exercises 27–52...Ch. 11.3 - Prob. 35ECh. 11.3 - Prob. 36ECh. 11.3 - Replace the polar equations in Exercises 27–52...Ch. 11.3 - Prob. 38ECh. 11.3 - Replace the polar equations in Exercises 27–52...Ch. 11.3 - Prob. 40ECh. 11.3 - Prob. 41ECh. 11.3 - Prob. 42ECh. 11.3 - Replace the polar equations in Exercises 27–52...Ch. 11.3 - Replace the polar equations in Exercises 27–52...Ch. 11.3 - Prob. 45ECh. 11.3 - Prob. 46ECh. 11.3 - Replace the polar equations in Exercises 27–52...Ch. 11.3 - Replace the polar equations in Exercises 27–52...Ch. 11.3 - Replace the polar equations in Exercises 27–52...Ch. 11.3 - Prob. 50ECh. 11.3 - Prob. 51ECh. 11.3 - Prob. 52ECh. 11.3 - Replace the Cartesian equations in Exercises 53–66...Ch. 11.3 - Prob. 54ECh. 11.3 - Prob. 55ECh. 11.3 - Prob. 56ECh. 11.3 - Prob. 57ECh. 11.3 - Prob. 58ECh. 11.3 - Prob. 59ECh. 11.3 - Prob. 60ECh. 11.3 - Prob. 61ECh. 11.3 - Prob. 62ECh. 11.3 - Prob. 63ECh. 11.3 - Prob. 64ECh. 11.3 - Prob. 65ECh. 11.3 - Prob. 66ECh. 11.3 - Prob. 67ECh. 11.3 - Prob. 68ECh. 11.4 - Prob. 1ECh. 11.4 - Prob. 2ECh. 11.4 - Prob. 3ECh. 11.4 - Prob. 4ECh. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - Prob. 7ECh. 11.4 - Prob. 8ECh. 11.4 - Prob. 9ECh. 11.4 - Prob. 10ECh. 11.4 - Prob. 11ECh. 11.4 - Prob. 12ECh. 11.4 - Prob. 13ECh. 11.4 - Prob. 14ECh. 11.4 - Prob. 15ECh. 11.4 - Prob. 16ECh. 11.4 - Find the slopes of the curves in Exercises 17-20...Ch. 11.4 - Find the slopes of the curves in Exercises 17-20...Ch. 11.4 - Prob. 19ECh. 11.4 - Prob. 20ECh. 11.4 - Prob. 21ECh. 11.4 - Prob. 22ECh. 11.4 - Prob. 23ECh. 11.4 - Prob. 24ECh. 11.4 - Prob. 25ECh. 11.4 - Prob. 26ECh. 11.4 - Prob. 27ECh. 11.4 - Prob. 28ECh. 11.4 - Prob. 29ECh. 11.4 - Prob. 30ECh. 11.4 - Prob. 31ECh. 11.4 - Prob. 32ECh. 11.4 - Which of the following has the same graph as r = 1...Ch. 11.4 - Prob. 34ECh. 11.4 - Prob. 35ECh. 11.4 - Prob. 36ECh. 11.4 - Roses Graph the roses r = cos mθ for m = 1/3, 2,...Ch. 11.4 - Spirals Polar coordinates are just the thing for...Ch. 11.4 - Graph the equation for 0 ≤ θ 14 π.
Ch. 11.4 - Prob. 40ECh. 11.5 - Finding Polar Areas
Find the areas of the regions...Ch. 11.5 - Finding Polar Areas
Find the areas of the regions...Ch. 11.5 - Prob. 3ECh. 11.5 - Prob. 4ECh. 11.5 - Prob. 5ECh. 11.5 - Prob. 6ECh. 11.5 - Prob. 7ECh. 11.5 - Prob. 8ECh. 11.5 - Find the areas of the regions in Exercises...Ch. 11.5 - Find the areas of the regions in Exercises...Ch. 11.5 - Find the areas of the regions in Exercises...Ch. 11.5 - Find the areas of the regions in Exercises...Ch. 11.5 - Find the areas of the regions in Exercises...Ch. 11.5 - Find the areas of the regions in Exercises...Ch. 11.5 - Find the areas of the regions in Exercises...Ch. 11.5 - Find the areas of the regions in Exercises...Ch. 11.5 - Find the areas of the regions in Exercises...Ch. 11.5 - Find the areas of the regions in Exercises...Ch. 11.5 - Prob. 19ECh. 11.5 - Find the areas of the regions in Exercises...Ch. 11.5 - Find the lengths of the curves in Exercises...Ch. 11.5 - Find the lengths of the curves in Exercises...Ch. 11.5 - Prob. 23ECh. 11.5 - Find the lengths of the curves in Exercises...Ch. 11.5 - Prob. 25ECh. 11.5 - Prob. 26ECh. 11.5 - Find the lengths of the curves in Exercises...Ch. 11.5 - Find the lengths of the curves in Exercises...Ch. 11.5 - Prob. 29ECh. 11.5 - Prob. 30ECh. 11.5 - Prob. 31ECh. 11.5 - Prob. 32ECh. 11.6 - Match the parabolas in Exercises 1–4 with the...Ch. 11.6 - Match the parabolas in Exercises 1–4 with the...Ch. 11.6 - Match the parabolas in Exercises 1–4 with the...Ch. 11.6 - Match the parabolas in Exercises 1–4 with the...Ch. 11.6 - Match each conic section in Exercises 5–8 with one...Ch. 11.6 - Match each conic section in Exercises 5–8 with one...Ch. 11.6 - Match each conic section in Exercises 5–8 with one...Ch. 11.6 - Match each conic section in Exercises 5–8 with one...Ch. 11.6 - Exercises 9–16 give equations of parabolas. Find...Ch. 11.6 - Prob. 10ECh. 11.6 - Exercises 9–16 give equations of parabolas. Find...Ch. 11.6 - Prob. 12ECh. 11.6 - Exercises 9–16 give equations of parabolas. Find...Ch. 11.6 - Prob. 14ECh. 11.6 - Exercises 9–16 give equations of parabolas. Find...Ch. 11.6 - Prob. 16ECh. 11.6 - Prob. 17ECh. 11.6 - Prob. 18ECh. 11.6 - Exercises 17–24 give equations for ellipses. Put...Ch. 11.6 - Prob. 20ECh. 11.6 - Exercises 17–24 give equations for ellipses. Put...Ch. 11.6 - Prob. 22ECh. 11.6 - Exercises 17–24 give equations for ellipses. Put...Ch. 11.6 - Prob. 24ECh. 11.6 - Exercises 25 and 26 give information about the...Ch. 11.6 - Prob. 26ECh. 11.6 - Prob. 27ECh. 11.6 - Prob. 28ECh. 11.6 - Prob. 29ECh. 11.6 - Prob. 30ECh. 11.6 - Prob. 31ECh. 11.6 - Prob. 32ECh. 11.6 - Prob. 33ECh. 11.6 - Prob. 34ECh. 11.6 - Prob. 35ECh. 11.6 - Prob. 36ECh. 11.6 - Exercises 35–38 give information about the foci,...Ch. 11.6 - Exercises 35–38 give information about the foci,...Ch. 11.6 - The parabola y2 = 8x is shifted down 2 units and...Ch. 11.6 - Prob. 40ECh. 11.6 - Prob. 41ECh. 11.6 - Prob. 42ECh. 11.6 - Prob. 43ECh. 11.6 - Prob. 44ECh. 11.6 - Prob. 45ECh. 11.6 - Exercises 39–42 give equations for parabolas and...Ch. 11.6 - Prob. 47ECh. 11.6 - Prob. 48ECh. 11.6 - Prob. 49ECh. 11.6 - Prob. 50ECh. 11.6 - Prob. 51ECh. 11.6 - Prob. 52ECh. 11.6 - Prob. 53ECh. 11.6 - Prob. 54ECh. 11.6 - Prob. 55ECh. 11.6 - Prob. 56ECh. 11.6 - Prob. 57ECh. 11.6 - Prob. 58ECh. 11.6 - Prob. 59ECh. 11.6 - Prob. 60ECh. 11.6 - Prob. 61ECh. 11.6 - Prob. 62ECh. 11.6 - Prob. 63ECh. 11.6 - Prob. 64ECh. 11.6 - Prob. 65ECh. 11.6 - Prob. 66ECh. 11.6 - Prob. 67ECh. 11.6 - Prob. 68ECh. 11.6 - Prob. 69ECh. 11.6 - Prob. 70ECh. 11.6 - Prob. 71ECh. 11.6 - Prob. 72ECh. 11.6 - Prob. 73ECh. 11.6 - Prob. 74ECh. 11.6 - Prob. 75ECh. 11.6 - Prob. 76ECh. 11.6 - Prob. 77ECh. 11.6 - Prob. 78ECh. 11.6 - Prob. 79ECh. 11.6 - Prob. 80ECh. 11.6 - Prob. 81ECh. 11.7 - Prob. 1ECh. 11.7 - Prob. 2ECh. 11.7 - Prob. 3ECh. 11.7 - Prob. 4ECh. 11.7 - Prob. 5ECh. 11.7 - Prob. 6ECh. 11.7 - Prob. 7ECh. 11.7 - Prob. 8ECh. 11.7 - Exercises 9–12 give the foci or vertices and the...Ch. 11.7 - Prob. 10ECh. 11.7 - Prob. 11ECh. 11.7 - Prob. 12ECh. 11.7 - Prob. 13ECh. 11.7 - Prob. 14ECh. 11.7 - Prob. 15ECh. 11.7 - Prob. 16ECh. 11.7 - Prob. 17ECh. 11.7 - Prob. 18ECh. 11.7 - Prob. 19ECh. 11.7 - Prob. 20ECh. 11.7 - Prob. 21ECh. 11.7 - Prob. 22ECh. 11.7 - Prob. 23ECh. 11.7 - Prob. 24ECh. 11.7 - Prob. 25ECh. 11.7 - Prob. 26ECh. 11.7 - Prob. 27ECh. 11.7 - Prob. 28ECh. 11.7 - Prob. 29ECh. 11.7 - Prob. 30ECh. 11.7 - Prob. 31ECh. 11.7 - Prob. 32ECh. 11.7 - Prob. 33ECh. 11.7 - Prob. 34ECh. 11.7 - Prob. 35ECh. 11.7 - Prob. 36ECh. 11.7 - Prob. 37ECh. 11.7 - Sketch the parabolas and ellipses in Exercises...Ch. 11.7 - Prob. 39ECh. 11.7 - Prob. 40ECh. 11.7 - Sketch the parabolas and ellipses in Exercises...Ch. 11.7 - Prob. 42ECh. 11.7 - Prob. 43ECh. 11.7 - Prob. 44ECh. 11.7 - Prob. 45ECh. 11.7 - Prob. 46ECh. 11.7 - Prob. 47ECh. 11.7 - Prob. 48ECh. 11.7 - Prob. 49ECh. 11.7 - Prob. 50ECh. 11.7 - Prob. 51ECh. 11.7 - Prob. 52ECh. 11.7 - Prob. 53ECh. 11.7 - Prob. 54ECh. 11.7 - Prob. 55ECh. 11.7 - Prob. 56ECh. 11.7 - Prob. 57ECh. 11.7 - Prob. 58ECh. 11.7 - Prob. 59ECh. 11.7 - Prob. 60ECh. 11.7 - Prob. 61ECh. 11.7 - Prob. 62ECh. 11.7 - Prob. 63ECh. 11.7 - Prob. 64ECh. 11.7 - Prob. 65ECh. 11.7 - Prob. 66ECh. 11.7 - Prob. 67ECh. 11.7 - Prob. 68ECh. 11.7 - Prob. 69ECh. 11.7 - Prob. 70ECh. 11.7 - Prob. 71ECh. 11.7 - Prob. 72ECh. 11.7 - Prob. 73ECh. 11.7 - Prob. 74ECh. 11.7 - Prob. 75ECh. 11.7 - Prob. 76ECh. 11 - Prob. 1GYRCh. 11 - Give some typical parametrizations for lines,...Ch. 11 - Prob. 3GYRCh. 11 - What is the formula for the slope dy/dx of a...Ch. 11 - Prob. 5GYRCh. 11 - Prob. 6GYRCh. 11 - Prob. 7GYRCh. 11 - Prob. 8GYRCh. 11 - Prob. 9GYRCh. 11 - Prob. 10GYRCh. 11 - Prob. 11GYRCh. 11 - Prob. 12GYRCh. 11 - Prob. 13GYRCh. 11 - Prob. 14GYRCh. 11 - Prob. 15GYRCh. 11 - Prob. 16GYRCh. 11 - Prob. 17GYRCh. 11 - Prob. 18GYRCh. 11 - Prob. 19GYRCh. 11 - Prob. 1PECh. 11 - Prob. 2PECh. 11 - Prob. 3PECh. 11 - Prob. 4PECh. 11 - Prob. 5PECh. 11 - Prob. 6PECh. 11 - Prob. 7PECh. 11 - Prob. 8PECh. 11 - Prob. 9PECh. 11 - Prob. 10PECh. 11 - Prob. 11PECh. 11 - Prob. 12PECh. 11 - Prob. 13PECh. 11 - Prob. 14PECh. 11 - Prob. 15PECh. 11 - Prob. 16PECh. 11 - Prob. 17PECh. 11 - Prob. 18PECh. 11 - Prob. 19PECh. 11 - Prob. 20PECh. 11 - Prob. 21PECh. 11 - Prob. 22PECh. 11 - Prob. 23PECh. 11 - Prob. 24PECh. 11 - Prob. 25PECh. 11 - Prob. 26PECh. 11 - Prob. 27PECh. 11 - Prob. 28PECh. 11 - Prob. 29PECh. 11 - Prob. 30PECh. 11 - Prob. 31PECh. 11 - Prob. 32PECh. 11 - Prob. 33PECh. 11 - Prob. 34PECh. 11 - Prob. 35PECh. 11 - Prob. 36PECh. 11 - Prob. 37PECh. 11 - Prob. 38PECh. 11 - Match each graph in Exercises 39–46 with the...Ch. 11 - Prob. 40PECh. 11 - Prob. 41PECh. 11 - Prob. 42PECh. 11 - Prob. 43PECh. 11 - Prob. 44PECh. 11 - Prob. 45PECh. 11 - Prob. 46PECh. 11 - Prob. 47PECh. 11 - Prob. 48PECh. 11 - Prob. 49PECh. 11 - Prob. 50PECh. 11 - Prob. 51PECh. 11 - Prob. 52PECh. 11 - Prob. 53PECh. 11 - Prob. 54PECh. 11 - Prob. 55PECh. 11 - Prob. 56PECh. 11 - Prob. 57PECh. 11 - Prob. 58PECh. 11 - Prob. 59PECh. 11 - Prob. 60PECh. 11 - Prob. 61PECh. 11 - Prob. 62PECh. 11 - Prob. 63PECh. 11 - Prob. 64PECh. 11 - Prob. 65PECh. 11 - Prob. 66PECh. 11 - Prob. 67PECh. 11 - Prob. 68PECh. 11 - Prob. 69PECh. 11 - Prob. 70PECh. 11 - Prob. 71PECh. 11 - Prob. 72PECh. 11 - Prob. 73PECh. 11 - Prob. 74PECh. 11 - Prob. 75PECh. 11 - Prob. 76PECh. 11 - Prob. 77PECh. 11 - Prob. 78PECh. 11 - Prob. 79PECh. 11 - Prob. 80PECh. 11 - Prob. 81PECh. 11 - Prob. 82PECh. 11 - Prob. 83PECh. 11 - Prob. 84PECh. 11 - Prob. 85PECh. 11 - Prob. 86PECh. 11 - Prob. 87PECh. 11 - Prob. 88PECh. 11 - Prob. 1AAECh. 11 - Prob. 2AAECh. 11 - Prob. 3AAECh. 11 - Prob. 4AAECh. 11 - Prob. 5AAECh. 11 - Prob. 6AAECh. 11 - Prob. 7AAECh. 11 - Prob. 8AAECh. 11 - Prob. 9AAECh. 11 - Prob. 10AAECh. 11 - Prob. 11AAECh. 11 - Prob. 12AAECh. 11 - Prob. 13AAECh. 11 - Prob. 14AAECh. 11 - Prob. 15AAECh. 11 - Prob. 16AAECh. 11 - Prob. 17AAECh. 11 - Prob. 18AAECh. 11 - Prob. 19AAECh. 11 - Prob. 20AAECh. 11 - Prob. 21AAECh. 11 - Prob. 22AAECh. 11 - Epicycloids When a circle rolls externally along...Ch. 11 - Prob. 24AAECh. 11 - Prob. 25AAECh. 11 - Prob. 26AAECh. 11 - Prob. 27AAECh. 11 - Prob. 28AAECh. 11 - Prob. 29AAECh. 11 - Prob. 30AAE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
- (8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward(4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward
- (2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forward(5) (10 points) Let D be the parallelogram in the xy-plane with vertices (0, 0), (1, 1), (1, 1), (0, -2). Let f(x,y) = xy/2. Use the linear change of variables T(u, v)=(u,u2v) = (x, y) 1 to calculate the integral f(x,y) dA= 0 ↓ The domain of T is a rectangle R. What is R? |ǝ(x, y) du dv. |ð(u, v)|arrow_forward
- 2 Anot ined sove in peaper PV+96252 Q3// Find the volume of the region between the cylinder z = y2 and the xy- plane that is bounded by the planes x=1, x=2,y=-2,andy=2. vertical rect a Q4// Draw and Evaluate Soxy-2sin (ny2)dydx D Lake tarrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. B 13 cm 97° Law of Sines Law of Cosines A 43° Then solve the triangle. (Round your answers to two decimal places.) b = x C = A = 40.00arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a 29 b 39 d Ꮎ 126° a Ꮎ b darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
What is Ellipse?; Author: Don't Memorise;https://www.youtube.com/watch?v=nzwCInIMlU4;License: Standard YouTube License, CC-BY