EBK CHEMISTRY: THE MOLECULAR NATURE OF
7th Edition
ISBN: 9781119513216
Author: HYSLOP
Publisher: JOHN WILEY+SONS INC.
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 12RQ
Interpretation Introduction
Interpretation:
The type of attractive forces, intermolecular or intramolecular, that are responsible for the chemical and physical properties of any substance are to be determined.
Concept Introduction:
The various kinds of interactions that bind a molecule are known as intermolecular forces. These can be dispersion forces, dipole-dipole interaction, ion-dipole interaction, and hydrogen bonding.
The forces that are present within a molecule are called intramolecular forces, such as in ionic bonds, covalent bonds, and metallic bonds.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 11 Solutions
EBK CHEMISTRY: THE MOLECULAR NATURE OF
Ch. 11 - Prob. 1PECh. 11 - List the following in order of their boiling...Ch. 11 - Propylamine and trimethylamine have the same...Ch. 11 - People living in arid, dry, regions can cool their...Ch. 11 - Use the kinetic molecular theory to explain why...Ch. 11 - Considering Figure 11.24, in which direction...Ch. 11 - Suppose a liquid is in equilibrium with its vapor...Ch. 11 - The Dead Sea is approximately 1300 ft below sea...Ch. 11 - The atmospheric pressure at the summit of Mt....Ch. 11 - Benzene has a boiling point of 80.1C, and a...
Ch. 11 - Steam can cause more severe bums than water, even...Ch. 11 - The equilibrium line from point B to D in Figure...Ch. 11 - What phase changes will occur if water at 20C and...Ch. 11 - Prob. 14PECh. 11 - Use Le Chtelier's principle to predict how a...Ch. 11 - Prob. 16PECh. 11 - At 0.00C, hexane, C6H14, has a vapor pressure of...Ch. 11 - Prob. 18PECh. 11 - Chromium crystallizes in a body-centered cubic...Ch. 11 - What is the ratio of the ions in the unit cell of...Ch. 11 - Polonium is the only metal known to crystallize in...Ch. 11 - Use the data in the previous Practice Exercise to...Ch. 11 - Stearic acid is an organic acid that has a chain...Ch. 11 - Boron nitride, which has the empirical formula BN,...Ch. 11 - Crystals of elemental sulfur are easily crushed...Ch. 11 - 11.1 Why are the intermolecular attractive forces...Ch. 11 - Compare the behavior of gases, liquids, and solids...Ch. 11 - Prob. 3RQCh. 11 - Why do intermolecular attractions weaken as the...Ch. 11 - Prob. 5RQCh. 11 - Define polarizability. How does this property...Ch. 11 - Prob. 7RQCh. 11 - 11.8 Which nonmetals, besides hydrogen, are...Ch. 11 - Prob. 9RQCh. 11 - Which would give a stronger iondipole interaction...Ch. 11 - Prob. 11RQCh. 11 - Prob. 12RQCh. 11 - Intermolecular Forces and Physical...Ch. 11 - Prob. 14RQCh. 11 - Intermolecular Forces and Physical Properties Name...Ch. 11 - Prob. 16RQCh. 11 - Prob. 17RQCh. 11 - Prob. 18RQCh. 11 - Prob. 19RQCh. 11 - Prob. 20RQCh. 11 - Intermolecular Forces and Physical...Ch. 11 - Prob. 22RQCh. 11 - Prob. 23RQCh. 11 - Prob. 24RQCh. 11 - Prob. 25RQCh. 11 - Prob. 26RQCh. 11 - Prob. 27RQCh. 11 - Prob. 28RQCh. 11 - Prob. 29RQCh. 11 - Changes of State and Dynamic Equilibrium What...Ch. 11 - Prob. 31RQCh. 11 - Changes of State and Dynamic Equilibrium
11.32 Why...Ch. 11 - Changes of State and Dynamic Equilibrium
11.33...Ch. 11 - Changes of State and Dynamic Equilibrium
11.34....Ch. 11 - Prob. 35RQCh. 11 - Prob. 36RQCh. 11 - Vapor Pressures of Liquids and Solids
11.37...Ch. 11 - Prob. 38RQCh. 11 - Vapor Pressures of Liquids and Solids 11.39 What...Ch. 11 - Vapor Pressures of Liquids and Solids Why does...Ch. 11 - Vapor Pressures of Liquids and Solids Why do we...Ch. 11 - Prob. 42RQCh. 11 - Boiling Points of Liquids Why does the boiling...Ch. 11 - Boiling Points of Liquids Mt. Kilimanjaro in...Ch. 11 - Boiling Points of Liquids
11.45. When liquid...Ch. 11 - Prob. 46RQCh. 11 - Boiling Points of Liquids Butane, C4H10, has a...Ch. 11 - Boiling Points of Liquids
11.48. Why does have a...Ch. 11 - Boiling Points of Liquids An HF bond is more polar...Ch. 11 - Energy and Changes of State The following is a...Ch. 11 - Energy and Changes of State
11.51 Why is larger...Ch. 11 - Energy and Changes of State Would the heat of...Ch. 11 - Energy and Changes of State Hurricanes can travel...Ch. 11 - Energy and Changes of State Ethanol (grain...Ch. 11 - Energy and Changes of State A burn caused by steam...Ch. 11 - Energy and Changes of State
11.56 Arrange the...Ch. 11 - Prob. 57RQCh. 11 - Phase Diagrams
11.58 Define critical temperature...Ch. 11 - Phase Diagrams What is a supercritical fluid? Why...Ch. 11 - Phase Diagrams
11.60 What phases of a substance...Ch. 11 - Prob. 61RQCh. 11 - Prob. 62RQCh. 11 - Phase Diagrams Sketch a generic phase diagram that...Ch. 11 - Phase Diagrams
11.64 What is the significance of...Ch. 11 - Prob. 65RQCh. 11 - Le Chtelier's Principle and Changes of State State...Ch. 11 - Le Châtelier's Principle and Changes of...Ch. 11 - Le Chtelier's Principle and Changes of State Use...Ch. 11 - Le Chtelier's Principle and Changes of State Use...Ch. 11 - Le Châtelier's Principle and Changes of...Ch. 11 - Determining Heats of Vaporization According to the...Ch. 11 - Determining Heats of Vaporization Why can't...Ch. 11 - Determining Heats of Vaporization Why can any...Ch. 11 - Prob. 74RQCh. 11 - Prob. 75RQCh. 11 - Prob. 76RQCh. 11 - Determining the Structure of Solids What...Ch. 11 - Determining the Structure of Solids
11.78 The...Ch. 11 - The figure below illustrates the way the atoms of...Ch. 11 - Make a sketch of a layer of sodium ions and...Ch. 11 - 11.81 How do the crystal structures of copper and...Ch. 11 - Determining the Structure of Solids
11.82 What...Ch. 11 - Determining the Structure of Solids Only 14...Ch. 11 - Determining the Structure of Solids Write the...Ch. 11 - Determining the Structure of Solids Why cant...Ch. 11 - Prob. 86RQCh. 11 - Crystal Types and Physical Properties
11.87 What...Ch. 11 - Prob. 88RQCh. 11 - Prob. 89RQCh. 11 - Prob. 90RQCh. 11 - Intermolecular Forces and Physical Properties What...Ch. 11 - Intermolecular Forces and Physical Properties What...Ch. 11 - Intermolecular Forces and Physical Properties...Ch. 11 - Prob. 94RQCh. 11 - 11.95 Consider the compounds (chloroform, an...Ch. 11 - 11.96 Carbon dioxide does not liquefy at...Ch. 11 - Prob. 97RQCh. 11 - Prob. 98RQCh. 11 - Prob. 99RQCh. 11 - Prob. 100RQCh. 11 - 11.101 The following are the vapor pressures of...Ch. 11 - 11.102 The boiling points of some common...Ch. 11 - 11.103 Using the information in Problem 11.101,...Ch. 11 - 11.104 Using the information in Problem 11.102,...Ch. 11 - 11.105 What intermolecular forces must the...Ch. 11 - 11.106 What intermolecular attractions will be...Ch. 11 - Energy and Changes of State The molar heat of...Ch. 11 - Energy and Changes of State The molar heat of...Ch. 11 - *11.109 Suppose 45.0 g of water at is added to...Ch. 11 - A cube of solid benzene (C6H6) at its melting...Ch. 11 - Prob. 111RQCh. 11 - Prob. 112RQCh. 11 - Prob. 113RQCh. 11 - Prob. 114RQCh. 11 - Prob. 115RQCh. 11 - Prob. 116RQCh. 11 - Determining Heats of Vaporization
*11.117 Mercury...Ch. 11 - Prob. 118RQCh. 11 - Prob. 119RQCh. 11 - *11.120 If the vapor pressure of ethylene glycol...Ch. 11 - Determining the Structure of Solids
11.121 How...Ch. 11 - 11.122 How many copper atoms are within the...Ch. 11 - The atomic radius of nickel is 1.24 . Nickel...Ch. 11 - 11.124 Silver forms face-centered cubic crystals....Ch. 11 - Potassium ions have a radius of 133 pm, and...Ch. 11 - 11.126 The unit cell edge in sodium chloride has a...Ch. 11 - Prob. 127RQCh. 11 - Prob. 128RQCh. 11 - *11.129 Cesium chloride forms a simple cubic...Ch. 11 - 11.130 Rubidium chloride has the rock salt...Ch. 11 - Prob. 131RQCh. 11 - Crystal Types and Physical Properties Elemental...Ch. 11 - Prob. 133RQCh. 11 - Prob. 134RQCh. 11 - Prob. 135RQCh. 11 - Crystal Types and Physical Properties
11.1 36...Ch. 11 - List all of the attractive forces that exist in...Ch. 11 - 11.138 Calculate the mass of water vapor present...Ch. 11 - 11.139 Should acetone molecules be attracted to...Ch. 11 - The following thermochemical equations apply to...Ch. 11 - Melting point is sometimes used as an indication...Ch. 11 - When warm, moist air sweeps in from the ocean and...Ch. 11 - *11.143 Gold crystallizes in a face-centered cubic...Ch. 11 - Gold crystallizes with a face-centered cubic unit...Ch. 11 - Identify the type of unit cell belonging to the...Ch. 11 - Calculate the amount of empty space (in pm3) in...Ch. 11 - Silver has an atomic radius of 144 pm. What would...Ch. 11 - Potassium chloride crystallizes with the rock salt...Ch. 11 - Prob. 149RQCh. 11 - There are 270 Calories in a Hersheys* Milk...Ch. 11 - Prob. 151RQCh. 11 - *11.152 Frecze-drying is a process used to...Ch. 11 - When reporting the vapor pressure for a substance...Ch. 11 - 11.154 Supercritical is used to decaffeinate...Ch. 11 - 11.155 Freshly precipitated crystals are usually...Ch. 11 - 11.156 What are three “everyday” applications of...Ch. 11 - Prob. 157RQCh. 11 - 11.158 Galileo's thermometer is a tube of liquid...Ch. 11 - Use the Clausius-Clapeyron equation to plot the...Ch. 11 - Prob. 160RQCh. 11 - Earlier in this chapter it was noted that the...
Knowledge Booster
Similar questions
- Substance A is composed of molecules that have stronger intermolecular forces than the molecules that compose substance B. Which substance has a lower boiling point? a. substance A b. substance B c. cannot be determined without more information.arrow_forwardIntermolecular Forces The following picture represents atoms of hypothetical, nonmetallic, monatomic elements A, B, and C in a container at a temperature of 4 K (the piston maintains the pressure at 1 atm). None of these elements reacts with the others. a What is the state (solid, liquid, or gas) of each of the elements represented in the container? b Rank the elements in the container from greatest to least, in terms of intermolecular interactions. Explain your answer. c What type(s) of intermolecular attractions are present in each of these elements? d Explain which element has the greatest atomic mass. e One of the elements in the container has a normal boiling point of 2 K. Which element would that be (A, B, or C)? How do you know? f One of the elements has a melting point of 50 K. Which element would that be (A, B, or C)? Why? g The remaining element (the one you have yet to choose) has a normal boiling point of 25 K. Identify the element. Could this element have a freezing point of 7 K? Explain. h If you started heating the sample to 20 K, explain what you would observe with regard to the container and its contents during the heating. i Describe the container and its contents at 20 K. Describe (include a drawing) how the container and its contents look at 20 K. j Now you increase the temperature of the container to 30 K. Describe (include a drawing) how the container and its contents look at 30 K. Be sure to note any changes in going from 20 K to 30 K. k Finally, you heat the container to 60 K. Describe (include a drawing) how the container and its contents look at this temperature. Be sure to note any changes in going from 30K to 60karrow_forwardWhat are intermolecular forces? How do they differ from intramolecular forces? What are dipole-dipole forces? How do typical dipole-dipole forces differ from hydrogen bonding interactions? In what ways are they similar? What are London dispersion forces? How do typical London dispersion forces differ from dipole-dipole forces? In what ways are they similar? Describe the relationship between molecular size and strength of London dispersion forces. Place the major types of intermolecular forces in order of increasing strength. Is there some overlap? That is, can the strongest London dispersion forces be greater than some dipole-dipole forces? Give an example of such an instance.arrow_forward
- Classify each of the following statements as true or false. a Intermolecular attractions are stronger in liquids than in gases. b Substances with weak intermolecular attractions generally have low vapor pressures. c Liquids with high molar heats of vaporization usually are more viscous than liquids with low molar heats of vaporization. d A substance with a relatively high surface tension usually has a very low boiling point. e All other things being equal, hydrogen bonds are weaker than induced dipole or dipole forces. f Induced dipole forces become very strong between large molecules. g Other things being equal, nonpolar molecules have stronger intermolecular attractions than polar molecules. h The essential feature of a dynamic equilibrium is that the rates of opposing changes are equal. i Equilibrium vapor pressure depends on the concentration of a vapor above its own liquid. j The heat of vaporization is equal to the heat of fusion, but with opposite sign. k The boiling point of a liquid is a fixed property of the liquid. l If you break shatter an amorphous solid, it will break in straight lines, but if you break a crystalline solid, it will break in curved lines. m Ionic crystals are seldom soluble in water. n Molecular crystals are nearly always soluble in water. o The numerical value of heat of vaporization is always larger than the numerical value of heat of condensation. p The units of heat of fusion are kJ/gC. q The temperature of water drops while it is freezing. r Specific heat is conerned with a change in temperature.arrow_forwardIndicate whether or not each of the following statements about intermolecular forces is true or false. a. Hydrogen bonds are extra strong London forces. b. A London force is a very weak permanent dipoledipole interaction. c. The strength of dipoledipole interactions increases as molecular polarity increases. d. All molecules with H atoms can participate in hydrogen bonding.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning