Concept explainers
a. Presidential preference and race/ethnicity
Preference | Race/Ethnicity | |||||
White | Black | Latino | Totals | |||
Romney | 289 | 5 | 44 | 338 | ||
Obama Totals |
|
|
|
|
||
b. Presidential preference by education
Preference | Education | ||||
Less than HS | HS Graduate | College Graduate | Post-Graduate Degree | Totals | |
Romney | 30 | 180 | 118 | 10 | 338 |
Obama Totals |
|
|
|
|
|
c. Presidential preference by religion
Preference | Religion | |||||
Protestant | Catholic | Jewish | None | Other | Totals | |
Romney | 165 | 110 | 10 | 28 | 25 | 338 |
Obama Totals |
|
|
|
|
|
|
10.15
a. Presidential preference and gender
Gender | |||
Preference | Male | Female | Totals |
Romney | 165 | 173 | 338 |
Obama Totals |
|
|
|
b. Presidential preference and race/ethnicity
Preference | Race/Ethnicity | |||||
White | Black | Latino | Totals | |||
Romney | 289 | 5 | 44 | 338 | ||
Obama Totals |
|
|
|
|
||
c. Presidential preference by education
Preference | Education | ||||
Less than HS | HS Graduate | College Graduate | Post-Graduate Degree | Totals | |
Romney | 30 | 180 | 118 | 10 | 338 |
Obama Totals |
|
|
|
|
|
d. Presidential preference by religion
Preference | Religion | |||||
Protestant | Catholic | Jewish | None | Other | Totals | |
Romney | 165 | 110 | 10 | 28 | 25 | 338 |
Obama Totals |
|
|
|
|
|
|
(a)
To find:
The column percentages, strength and pattern of relationship.
Answer to Problem 11.5P
Solution:
There is a strong positive association between Race/Ethnicity and preference of vote.
Explanation of Solution
Given:
The given statement is,
A random sample of 748 voters in a large city was asked how they voted in the presidential election of 2012.
The given table of information is,
Preference | Race/Ethnicity | |||
White | Black | Latino | Totals | |
Romney | 289 | 5 | 44 | 338 |
Obama | 249 | 95 | 66 | 410 |
Totals | 538 | 100 | 110 | 748 |
Approach:
If the Cramer’s V value is less than 0.10, it is said that there is a weak association between the categories.
If the Cramer’s V value lies between 0.11 and 0.30, it is said that there is a moderate association between the categories.
If the Cramer’s V value is greater than 0.30, it is said that there is a strong association between the categories.
Formula used:
For a chi square, the expected frequency
Where N is the total of frequencies.
The chi square statistic is given by,
Where
And
The degrees of freedom for the bivariate table is given as,
Where r is the number of rows and c is the number of columns.
For table larger than
Where,
N is the total number of elements,
r is the number of rows,
and c is the number of columns.
Calculation:
From the given information,
The observed frequency is given as,
Substitute 338 for row marginal, 538 for column marginal and 748 for N in equation
Substitute 338 for row marginal, 100 for column marginal and 748 for N in equation
Substitute 338 for row marginal, 110 for column marginal and 748 for N in equation
Substitute 410 for row marginal, 538 for column marginal and 748 for N in equation
Substitute 410 for row marginal, 100 for column marginal and 748 for N in equation
Substitute 410 for row marginal, 110 for column marginal and 748 for N in equation
Consider the following table,
289 | 243.11 | 45.89 | 2105.89 | 8.66 | |
5 | 45.19 | 161.24 | 35.74 | ||
44 | 49.71 | 32.60 | 0.66 | ||
249 | 294.89 | 2105.89 | 7.14 | ||
95 | 54.81 | 40.19 | 1615.24 | 29.47 | |
66 | 60.29 | 5.71 | 32.60 | 0.54 | |
Total | 748 | 748 | 0 |
The value
Substitute 289 for
Squaring the above obtained result,
Divide the above obtained result by
Proceed in a similar manner to obtain rest of the values of
The chi square value is given as,
Thus, the chi square value is 82.21.
The level of significance is
Number of rows is 2 and the number of columns of 3.
The degrees of freedom is given by,
And area of critical region is
The Cramer’s V is given by the formula,
Substitute 82.21 for
Since, 0.33 is greater than 0.30 it shows that the strength of association is strong.
Thus, there is a strong positive association between Race/Ethnicity and preference of vote.
Conclusion:
There is a strong positive association between Race/Ethnicity and preference of vote.
(b)
To find:
The column percentages, strength and pattern of relationship.
Answer to Problem 11.5P
Solution:
There is a moderate positive association between education and preference of vote.
Explanation of Solution
Given:
The given statement is,
A random sample of 748 voters in a large city was asked how they voted in the presidential election of 2012.
The given table of information is,
Preference | Education | ||||
Less than HS | HS Graduate | College Graduate | Post-Graduate Degree | Totals | |
Romney | 30 | 180 | 118 | 10 | 338 |
Obama | 35 | 120 | 218 | 37 | 410 |
Totals | 65 | 300 | 336 | 47 | 748 |
Approach:
If the Cramer’s V value is less than 0.10, it is said that there is a weak association between the categories.
If the Cramer’s V value lies between 0.11 and 0.30, it is said that there is a moderate association between the categories.
If the Cramer’s V value is greater than 0.30, it is said that there is a strong association between the categories.
Formula used:
For a chi square, the expected frequency
Where N is the total of frequencies.
The chi square statistic is given by,
Where
And
The degrees of freedom for the bivariate table is given as,
Where r is the number of rows and c is the number of columns.
For table larger than
Where,
N is the total number of elements,
r is the number of rows,
and c is the number of columns.
Calculation:
From the given information,
The observed frequency is given as,
Substitute 338 for row marginal, 65 for column marginal and 748 for N in equation
Substitute 338 for row marginal, 300 for column marginal and 748 for N in equation
Substitute 338 for row marginal, 336 for column marginal and 748 for N in equation
Substitute 338 for row marginal, 47 for column marginal and 748 for N in equation
Substitute 410 for row marginal, 65 for column marginal and 748 for N in equation
Substitute 410 for row marginal, 300 for column marginal and 748 for N in equation
Substitute 410 for row marginal, 336 for column marginal and 748 for N in equation
Substitute 410 for row marginal, 47 for column marginal and 748 for N in equation
Consider the following table,
30 | 29.37 | 0.63 | 0.40 | 0.01 | |
180 | 135.56 | 44.44 | 1974.91 | 14.57 | |
118 | 151.83 | 1144.47 | 7.54 | ||
10 | 21.24 | 126.34 | 5.95 | ||
35 | 35.63 | 0.40 | 0.01 | ||
120 | 164.44 | 1974.91 | 12.00 | ||
218 | 184.17 | 33.83 | 1144.47 | 6.21 | |
37 | 25.76 | 11.24 | 126.34 | 4.90 | |
Total | 748 | 748 | 0 |
The value
Substitute 30 for
Squaring the above obtained result,
Divide the above obtained result by
Proceed in a similar manner to obtain rest of the values of
The chi square value is given as,
Thus, the chi square value is 51.19.
The level of significance is
Number of rows is 2 and the number of columns of 4.
The degrees of freedom is given by,
And area of critical region is
The Cramer’s V is given by the formula,
Substitute 51.19 for
Since, 0.26 lies between 0.11 and 0.30 it shows that the strength of association is moderate.
Thus, there is a moderate positive association between education and preference of vote.
Conclusion:
There is a moderate positive association between education and preference of vote.
(c)
To find:
The column percentages, strength and pattern of relationship.
Answer to Problem 11.5P
Solution:
There is a moderate positive association between Religion and preference of vote.
Explanation of Solution
Given:
The given statement is,
A random sample of 748 voters in a large city was asked how they voted in the presidential election of 2012.
The given table of information is,
Preference | Religion | |||||
Protestant | Catholic | Jewish | None | Other | Totals | |
Romney | 165 | 110 | 10 | 28 | 25 | 338 |
Obama | 245 | 55 | 20 | 60 | 30 | 410 |
Totals | 410 | 165 | 30 | 88 | 55 | 748 |
Approach:
If the Cramer’s V value is less than 0.10, it is said that there is a weak association between the categories.
If the Cramer’s V value lies between 0.11 and 0.30, it is said that there is a moderate association between the categories.
If the Cramer’s V value is greater than 0.30, it is said that there is a strong association between the categories.
Formula used:
For a chi square, the expected frequency
Where N is the total of frequencies.
The chi square statistic is given by,
Where
And
The degrees of freedom for the bivariate table is given as,
Where r is the number of rows and c is the number of columns.
For table larger than
Where,
N is the total number of elements,
r is the number of rows,
and c is the number of columns.
Calculation:
From the given information,
The observed frequency is given as,
Substitute 338 for row marginal, 410 for column marginal and 748 for N in equation
Substitute 338 for row marginal, 165 for column marginal and 748 for N in equation
Substitute 338 for row marginal, 30 for column marginal and 748 for N in equation
Substitute 338 for row marginal, 88 for column marginal and 748 for N in equation
Substitute 338 for row marginal, 55 for column marginal and 748 for N in equation
Substitute 410 for row marginal, 410 for column marginal and 748 for N in equation
Substitute 410 for row marginal, 165 for column marginal and 748 for N in equation
Substitute 410 for row marginal, 30 for column marginal and 748 for N in equation
Substitute 410 for row marginal, 88 for column marginal and 748 for N in equation
Substitute 410 for row marginal, 55 for column marginal and 748 for N in equation
Consider the following table,
165 | 185.27 | 410.87 | 2.22 | ||
110 | 74.56 | 35.44 | 1255.99 | 16.85 | |
10 | 13.56 | 12.67 | 0.93 | ||
28 | 39.76 | 138.30 | 3.48 | ||
25 | 24.85 | 0.15 | 0.02 | 0.00 | |
245 | 224.73 | 20.27 | 410.87 | 1.83 | |
55 | 90.44 | 1255.99 | 13.89 | ||
20 | 16.44 | 3.56 | 12.67 | 0.77 | |
60 | 48.24 | 11.76 | 138.30 | 2.87 | |
30 | 30.15 | 0.02 | 0.00 | ||
Total | 748 | 748 | 0 |
The value
Substitute 165 for
Squaring the above obtained result,
Divide the above obtained result by
Proceed in a similar manner to obtain rest of the values of
The chi square value is given as,
Thus, the chi square value is 42.84.
The level of significance is
Number of rows is 2 and the number of columns of 5.
The degrees of freedom is given by,
And area of critical region is
The Cramer’s V is given by the formula,
Substitute 42.84 for
Since, 0.24 lies between 0.11 and 0.30 it shows that the strength of association is moderate.
Thus, there is a moderate positive association between Religion and preference of vote.
Conclusion:
There is a moderate positive association between Religion and preference of vote.
Want to see more full solutions like this?
Chapter 11 Solutions
ESSENTIALS OF STATISTICS-W/APLIA
- Compute the median of the following data. 32, 41, 36, 42, 29, 30, 40, 22, 25, 37arrow_forwardTask Description: Read the following case study and answer the questions that follow. Ella is a 9-year-old third-grade student in an inclusive classroom. She has been diagnosed with Emotional and Behavioural Disorder (EBD). She has been struggling academically and socially due to challenges related to self-regulation, impulsivity, and emotional outbursts. Ella's behaviour includes frequent tantrums, defiance toward authority figures, and difficulty forming positive relationships with peers. Despite her challenges, Ella shows an interest in art and creative activities and demonstrates strong verbal skills when calm. Describe 2 strategies that could be implemented that could help Ella regulate her emotions in class (4 marks) Explain 2 strategies that could improve Ella’s social skills (4 marks) Identify 2 accommodations that could be implemented to support Ella academic progress and provide a rationale for your recommendation.(6 marks) Provide a detailed explanation of 2 ways…arrow_forwardQuestion 2: When John started his first job, his first end-of-year salary was $82,500. In the following years, he received salary raises as shown in the following table. Fill the Table: Fill the following table showing his end-of-year salary for each year. I have already provided the end-of-year salaries for the first three years. Calculate the end-of-year salaries for the remaining years using Excel. (If you Excel answer for the top 3 cells is not the same as the one in the following table, your formula / approach is incorrect) (2 points) Geometric Mean of Salary Raises: Calculate the geometric mean of the salary raises using the percentage figures provided in the second column named “% Raise”. (The geometric mean for this calculation should be nearly identical to the arithmetic mean. If your answer deviates significantly from the mean, it's likely incorrect. 2 points) Starting salary % Raise Raise Salary after raise 75000 10% 7500 82500 82500 4% 3300…arrow_forward
- I need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forward310015 K Question 9, 5.2.28-T Part 1 of 4 HW Score: 85.96%, 49 of 57 points Points: 1 Save of 6 Based on a poll, among adults who regret getting tattoos, 28% say that they were too young when they got their tattoos. Assume that six adults who regret getting tattoos are randomly selected, and find the indicated probability. Complete parts (a) through (d) below. a. Find the probability that none of the selected adults say that they were too young to get tattoos. 0.0520 (Round to four decimal places as needed.) Clear all Final check Feb 7 12:47 US Oarrow_forward
- how could the bar graph have been organized differently to make it easier to compare opinion changes within political partiesarrow_forwardDraw a picture of a normal distribution with mean 70 and standard deviation 5.arrow_forwardWhat do you guess are the standard deviations of the two distributions in the previous example problem?arrow_forward
- Please answer the questionsarrow_forward30. An individual who has automobile insurance from a certain company is randomly selected. Let Y be the num- ber of moving violations for which the individual was cited during the last 3 years. The pmf of Y isy | 1 2 4 8 16p(y) | .05 .10 .35 .40 .10 a.Compute E(Y).b. Suppose an individual with Y violations incurs a surcharge of $100Y^2. Calculate the expected amount of the surcharge.arrow_forward24. An insurance company offers its policyholders a num- ber of different premium payment options. For a ran- domly selected policyholder, let X = the number of months between successive payments. The cdf of X is as follows: F(x)=0.00 : x < 10.30 : 1≤x<30.40 : 3≤ x < 40.45 : 4≤ x <60.60 : 6≤ x < 121.00 : 12≤ x a. What is the pmf of X?b. Using just the cdf, compute P(3≤ X ≤6) and P(4≤ X).arrow_forward
- Functions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt