The boiling point of given solution was calculated. Concept Introduction: Colligative properties of a substance include the depression in the freezing point, elevation of boiling-point and osmotic pressure. These are dependant only on the number present and not based on the solute particles present in an ideal solution. These properties have a direct relationship to the solute particles, and therefore the colligative properties are useful for identifying the nature of solute particles and also calculating the molar masses of substances. The change in boiling-point expressed by the given equation ΔT b =K b m Here K b is molal boiling-point elevation constant.
The boiling point of given solution was calculated. Concept Introduction: Colligative properties of a substance include the depression in the freezing point, elevation of boiling-point and osmotic pressure. These are dependant only on the number present and not based on the solute particles present in an ideal solution. These properties have a direct relationship to the solute particles, and therefore the colligative properties are useful for identifying the nature of solute particles and also calculating the molar masses of substances. The change in boiling-point expressed by the given equation ΔT b =K b m Here K b is molal boiling-point elevation constant.
Solution Summary: The author explains how the boiling point of a given solution was calculated. Colligative properties include the depression in the freezing point, elevation of boiling-point and osmotic pressure.
Interpretation: The boiling point of given solution was calculated.
Concept Introduction:
Colligative properties of a substance include the depression in the freezing point, elevation of boiling-point and osmotic pressure. These are dependant only on the number present and not based on the solute particles present in an ideal solution. These properties have a direct relationship to the solute particles, and therefore the colligative properties are useful for identifying the nature of solute particles and also calculating the molar masses of substances.
The change in boiling-point expressed by the given equation
ΔTb=Kbm
Here
Kb is molal boiling-point elevation constant.
The representation of a one-dimensional velocity distribution function for a gas, with increasing temperature the maximum occurs for vi = 0 m/s. Correct?
The representation of a one-dimensional velocity distribution function for a gas, as the temperature increases:a) it becomes more flattenedb) the maximum occurs for vi = 0 m/sExplain it.
The velocity distribution function of gas moleculesa) is used to measure their velocity, since the small size of gas molecules means that it cannot be measured in any other wayb) is only used to describe the velocity of particles if their density is very high.c) describes the probability that a gas particle has a velocity in a given interval of velocities