
Concept explainers
(a)
The speed at the bottom of the half-pipe.
(a)

Answer to Problem 11.48AP
The speed at the bottom of the half-pipe is
Explanation of Solution
Given info: The mass of particle is
Write the expression for conservation of work and energy law.
Here,
The skateboarder is at rest at point A, so there is a potential energy at point A,
Here,
The center of mass moves through one quarter of the circle.
The radius of the circle is,
The skateboarder is in motion so it acquires the kinetic energy at point B,
Here,
Substitute
Substitute
Conclusion:
Therefore, the speed at the bottom of the half-pipe is
(b)
The
(b)

Answer to Problem 11.48AP
The angular momentum of him about the center of curvature at the point B is
Explanation of Solution
Given info: The mass of particle is
Write the expression for the angular momentum about the center of curvature.
Here,
Substitute
Conclusion:
Therefore, the angular momentum of him about the center of curvature at the point B is
(c)
To explain: The angular momentum of him is constant in this maneuver, whereas the kinetic energy of his body is not constant.
(c)

Answer to Problem 11.48AP
After the passing point B, there is no torque about the axis of the channel act on him so; the angular momentum will be constant, but his legs convert the chemical energy into mechanical energy and the kinetic energy of his body is not constant.
Explanation of Solution
Given info: The mass of particle is
A skateboarder passes the point B, so there is no tangential force acts on him because the wheels on the skate prevent this force. The torque is zero due to no tangential force, so the angular momentum will be constant.
The kinetic energy increase because his legs convert chemical energy into mechanical energy and the kinetic energy will not be constant. While the normal force rises trajectory to enhance his linear momentum.
Conclusion:
Therefore, after the passing point B, there is no torque about the axis of the channel act on him so; the angular momentum will be constant, but his legs convert the chemical energy into mechanical energy and the kinetic energy of his body is not constant.
(d)
The speed immediately after the skateboarder stands up.
(d)

Answer to Problem 11.48AP
The speed of skateboarder after he stands up is
Explanation of Solution
Given info: The mass of particle is
The skateboarder stands up, so the distance is,
Write the expression for angular momentum.
Here,
Substitute
Conclusion:
Therefore, the speed of skateboarder after he stands up is
(e)
The amount of chemical energy in the skateboarder’s leg was converted into mechanical energy in skateboarder-Earth system when he stood up.
(e)

Answer to Problem 11.48AP
The amount of chemical energy in the skateboarder’s leg was converted into mechanical energy in skateboarder-Earth system when he stood up is
Explanation of Solution
Given info: The mass of particle is
At point B, the skate boarder has kinetic and chemical energy is,
Here,
At point C, he has kinetic energy due and the potential energy is,
Here,
Write the expression of the conservation of energy.
Substitute
Write the expression for the kinetic energy at point B.
Substitute
Thus, the kinetic energy at point B is
Write the expression for the kinetic energy at point C.
Substitute
Thus, the kinetic energy at point C is
Write the expression for potential energy at point C.
Here,
The radius of the pipe at point C,
Substitute
Thus, the potential energy at point C is
Substitute
Conclusion:
Therefore, the amount of chemical energy in the skateboarder’s leg was converted into mechanical energy in skateboarder-Earth system when he stood up is
Want to see more full solutions like this?
Chapter 11 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
- A film of oil lies on wet pavement. The refractive index of the oil exceeds that of the water. The film has the minimum nonzero thickness such that it appears dark due to destructive interference when viewed in visible light with wavelength 643 nm in vacuum. Assuming that the visible spectrum extends from 380 to 750 nm, what is the longest visible wavelength (in vacuum) for which the film will appear bright due to constructive interference? Number Unitsarrow_forwardA piece of metal is placed on top of a 2.0 - kg wooden block (mass density = 562 kg/m³) piece. UseArchimedes' principle to calculate the mass (in kg) of copper if the top of the wood surface is exactly at thewater's surface?arrow_forwardA filmmaker wants to achieve an interesting visual effect by filming a scene through a converging lens with a focal length of 50.0 m. The lens is placed betwen the camera and a horse, which canters toward the camera at a constant speed of 7.9 m/s. The camera starts rolling when the horse is 36.0 m from the lens. Find the average speed of the image of the horse (a) during the first 2.0 s after the camera starts rolling and (b) during the following 2.0 s.arrow_forward
- What is the direction of the magnetic force on a NEGATIVE CHARGE that moves as shown in each of the six cases?arrow_forwardHi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forward
- In addition to the anyalysis of the graph, show mathematically that the slope of that line is 2π/√g . Using the slope of your line calculate the value of g and compare it to 9.8.arrow_forwardAn object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forwardConcept Simulation 26.4 provides the option of exploring the ray diagram that applies to this problem. The distance between an object and its image formed by a diverging lens is 5.90 cm. The focal length of the lens is -2.60 cm. Find (a) the image distance and (b) the object distance.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





