Concept explainers
Crystalline silicon has a cubic structure. The unit cell edge length is 543 pm. The density of the solid is 2.33 g/cm3. Calculate the number of Si atoms in one unit cell.
Interpretation:
The number of Silicon atoms in unit cell of Silicon cubic lattice has to be determined.
Concept introduction:
In crystalline solids, the components are packed in regular pattern and neatly stacked. The components are imagined as spheres and closely packed. This phenomenon is called “close packing” in crystals. The two major types of close packing of the spheres in the crystal are – hexagonal close packing and cubic close packing.
Answer to Problem 11.43QP
The number of Silicon atoms in unit cell of Iron cubic lattice is
Explanation of Solution
Record the given data:
The unit cell is assumed that of a cubic shape and the edge length of the unit cell is given. Density of Silicon is given.
Calculate the volume of one unit cell of cubic lattice of Silicon.
Edge length of the cubic unit cell is given. The cubic value of edge length gives the volume of the unit cell.
Calculate the mass of one unit cell of cubic lattice of Silicon.
Density of the unit cell is given. The mass of unit cell is calculated using the equation
Calculate the average mass of one Silicon atom in unit cell.
The average mass of one Silicon atom in its crystal lattice is calculated using the atomic mass value of Silicon.
Calculate the number of Silicon atoms present in a unit cell.
The average mass of one Silicon atom in its crystal lattice is related to number of atoms per unit cell as follows –
Using this equation, the number of Silicon atoms present per unit cell has been calculated.
The number of Silicon atoms in unit cell of Silicon cubic lattice has been determined.
Want to see more full solutions like this?
Chapter 11 Solutions
CHEMISTRY 1111 LAB MANUAL >C<
- Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 Molecule 3 ----||| Molecule 4 Molecule 5 Molecule 6 none of the above mm..arrow_forwardUse the vapor-liquid equilibrium data at 1.0 atm. for methanol-water (Table 2-8 ) for the following: If the methanol vapor mole fraction is 0.600, what is the methanol liquid mole fraction? Is there an azeotrope in the methanol-water system at a pressure of 1.0 atmospheres? If water liquid mole fraction is 0.350, what is the water vapor mole fraction? What are the K values of methanol and of water at a methanol mole fraction in the liquid of 0.200? What is the relative volatility αM-W at a methanol mole fraction in the liquid of 0.200?arrow_forwardCheck the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. || |II***** Molecule 1 | Molecule 4 none of the above Molecule 2 Molecule 3 Х mm... C ---||| *** Molecule 5 Molecule 6arrow_forward
- is SiBr4 Silicon (IV) tetra Bromine? is KClO2 potassium dihypochlorite ?arrow_forward"יוון HO" Br CI Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 Molecule 3 Br Br Br HO OH H CI OH ✓ Molecule 4 Molecule 5 Molecule 6 CI Br יייון H Br OH OH CI Br ☐ none of the above × Garrow_forwardUS2 Would this be Uranium (II) diSulfide?arrow_forward
- nomenclature for PU(SO4)3arrow_forwardLi2CrO4 is this Lithium (II) Chromatearrow_forwardCheck the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. NH ** Molecule 1 NH Molecule 4 none of the above Х Molecule 3 Molecule 2 H N wwwwww.. HN Molecule 5 Molecule 6 HN R mw... N H ☐arrow_forward
- Nomenclature P4S3 Would this be tetraphsophorus tri sulfide?arrow_forwardDon't used Ai solutionarrow_forwardBenzene-toluene equilibrium is often approximated as αBT = 2.34. Generate the y-x diagram for this relative volatility. Also, generate the equilibrium data using Raoult’s law, and compare your results to these.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning