
Chemistry
3rd Edition
ISBN: 9780073402734
Author: Julia Burdge
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Question
Chapter 11, Problem 113AP
Interpretation Introduction
Interpretation:
The false statement out of the given statements is to be determined.
Concept introduction:
Intermolecular forces refer to the interactions between the molecules. They are of four types, namely, dispersion forces, dipole–dipole interactions, hydrogen bonding, and ion-dipole forces.
Dispersion forces present in every molecule due to the presence of electron.
Dipole–dipole interaction is the attractive force between opposite end of polar molecule.
Hydrogen bonding is the attractive force between hydrogen attached to an electronegative atom of one molecule and an electronegative atom of different molecule.
Ion-dipole force is the attractive force that due to electrostatic attraction between an ion and a neutral molecule.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Curved arrows are used to illustrate the flow of electrons.
Using the provided structures, draw the curved arrows that
epict the mechanistic steps for the proton transfer between
a hydronium ion and a pi bond.
Draw any missing organic structures in the empty boxes.
Be sure to account for all lone-pairs and charges as well as
bond-breaking and bond-making steps.
2 56°F
Mostly cloudy
F1
Drawing Arrows
>
Q Search
F2
F3
F4
▷11
H.
H
: CI:
H
+
Undo
Reset
Done
DELL
Calculate the chemical shifts in 13C and 1H NMR for 4-chloropropiophenone ? Write structure and label hydrogens and carbons. Draw out the benzene ring structure when doing it
1) Calculate the longest and shortest wavelengths in the Lyman and Paschen series.
2) Calculate the ionization energy of He* and L2+ ions in their ground states.
3) Calculate the kinetic energy of the electron emitted upon irradiation of a H-atom in ground state by a 50-nm radiation.
Chapter 11 Solutions
Chemistry
Ch. 11.1 - Prob. 1PPACh. 11.1 - Prob. 1PPBCh. 11.1 - Prob. 1PPCCh. 11.1 - Prob. 1CPCh. 11.1 - Prob. 2CPCh. 11.2 - Prob. 1PPACh. 11.2 - Prob. 1PPBCh. 11.2 - Prob. 1PPCCh. 11.2 - Prob. 1CPCh. 11.2 - 11.2.2 Given the following information for ...
Ch. 11.2 - 11.2.3 Using the graph, estimate the vapor...Ch. 11.2 - Using the result from question 11.2.3 and another...Ch. 11.3 - Practice ProblemATTEMPT When silver crystallizes,...Ch. 11.3 - Practice Problem BUILD
The density of sodium metal...Ch. 11.3 - Practice Problem CONCEPTUALIZE The diagram shows...Ch. 11.3 - 11.3.1 Nickel has a face-centered cubic unit cell...Ch. 11.3 - Prob. 2CPCh. 11.4 - Prob. 1PPACh. 11.4 - Prob. 1PPBCh. 11.4 - Prob. 1PPCCh. 11.5 - Practice ProblemATTEMPT LiF has the same unit cell...Ch. 11.5 - Practice ProblemBUILD NiO also adopts the...Ch. 11.5 - Practice ProblemCONCEPTUALIZE Referring to the...Ch. 11.6 - Practice Problem ATTEMPT
Aluminum metal...Ch. 11.6 - Practice Problem BUILD
Copper crystallizes in a...Ch. 11.6 - Prob. 1PPCCh. 11.6 - 11.6.1 How much energy (in kJ) is required to...Ch. 11.6 - 11.6.2 How much energy (in kJ) is given off when...Ch. 11.7 - Practice ProblemATTEMPT Calculate the amount of...Ch. 11.7 - Practice ProblemBUILD Determine the final state...Ch. 11.7 - Prob. 1PPCCh. 11.7 - Prob. 1CPCh. 11.7 - Prob. 2CPCh. 11.8 - Prob. 1PPACh. 11.8 - Practice Problem BUILD
Sketch the phase diagram of...Ch. 11.8 - Prob. 1PPCCh. 11 - Which of the following would you expect to be more...Ch. 11 - 11.2
Which of the following would you expect to be...Ch. 11 - Prob. 3KSPCh. 11 - Prob. 4KSPCh. 11 - Give an example for each type of intermolecular...Ch. 11 - 11.2 Explain the term polarizability. What kind of...Ch. 11 - Prob. 3QPCh. 11 - Prob. 4QPCh. 11 - 11.5 What physical properties are determined by...Ch. 11 - Prob. 6QPCh. 11 - Describe the types of intermolecular forces that...Ch. 11 - Prob. 8QPCh. 11 - Prob. 9QPCh. 11 - The binary hydrogen compounds of the Group 4A...Ch. 11 - 11.11 List the types of intermolecular forces that...Ch. 11 - Prob. 12QPCh. 11 - Prob. 13QPCh. 11 - Arrange the following in order of increasing...Ch. 11 - Diethyl ether has a boiling point of 34 .5°C , and...Ch. 11 - 11.16 Which member of each of the following pairs...Ch. 11 - Prob. 17QPCh. 11 - Explain in terms of intermolecular forces why (a)...Ch. 11 - What kind of attractive forces must be overcome to...Ch. 11 - Prob. 20QPCh. 11 - Prob. 21QPCh. 11 - Explain why liquids, unlike gases, are virtually...Ch. 11 - 11.23 What is surface tension? What is the...Ch. 11 - Prob. 24QPCh. 11 - Prob. 25QPCh. 11 - 11.26 A glass can be filled slightly above the rim...Ch. 11 - 11.27 Draw diagrams showing the capillary action...Ch. 11 - Prob. 28QPCh. 11 - Why does the viscosity of a liquid decrease with...Ch. 11 - Why is ice less dense than water?Ch. 11 - 11.31 Outdoor water pipes have to be drained or...Ch. 11 - Prob. 32QPCh. 11 - Prob. 33QPCh. 11 - Prob. 34QPCh. 11 - Predict the viscosity of ethylene glycol relative...Ch. 11 - 11.36 Vapor pressure measurements at several...Ch. 11 - The vapor pressure of liquid X is lower than that...Ch. 11 - 11.38 Define the following terms: crystalline...Ch. 11 - Describe the geometries of the following cubic...Ch. 11 - Classify the solid states in terms of crystal...Ch. 11 - The melting points of the oxides of the...Ch. 11 - Define X-ray diffraction. What are the typical...Ch. 11 - 11.43 Write the Bragg equation. Define every term...Ch. 11 - 11.44 What is the coordination number of each...Ch. 11 - Calculate the number of spheres that would be...Ch. 11 - Metallic iron crystallizes in a cubic lattice. The...Ch. 11 - Barium metal crystallizes in a body-centered cubic...Ch. 11 - 11.48 Vanadium crystallizes in a body-centered...Ch. 11 - Europium crystallizes in a body-centered cubic...Ch. 11 - 11.50 Crystalline silicon has a cubic structure....Ch. 11 - 11.51 A face-centered cubic cell contains 8 X...Ch. 11 - When X rays of wavelength 0.090 nm are diffracted...Ch. 11 - The distance between layers in an NaCl crystal is...Ch. 11 - Identify the unit cell of molecular iodine ( I 2 )...Ch. 11 - Shown here is a zinc oxide unit cell. What is the...Ch. 11 - Prob. 56QPCh. 11 - Prob. 57QPCh. 11 - A solid is hard, brittle, and electrically...Ch. 11 - A solid is soft and has a low melting point (below...Ch. 11 - Prob. 60QPCh. 11 - 11.61 Which of the following are molecular solids...Ch. 11 - Classify the solid state of the following...Ch. 11 - Prob. 63QPCh. 11 - Prob. 64QPCh. 11 - Define glass. What is the chief component of...Ch. 11 - 11.66 What is a phase change? Name all possible...Ch. 11 - What is the equilibrium vapor pressure of a...Ch. 11 - Use any one of the phase changes to explain what...Ch. 11 - 11.69 Define the following terms: (a) molar heat...Ch. 11 - How is the molar heat of sublimation related to...Ch. 11 - What can we learn about the intermolecular forces...Ch. 11 - The greater the molar heat of vaporization of a...Ch. 11 - Prob. 73QPCh. 11 - As a liquid is heated at constant pressure, its...Ch. 11 - What is critical temperature? What is the...Ch. 11 - Prob. 76QPCh. 11 - 11.77 How do the boiling points and melting points...Ch. 11 - Prob. 78QPCh. 11 - The vapor pressure of a liquid in a closed...Ch. 11 - Wet clothes dry more quickly on a hot, dry day...Ch. 11 - Which of the following phase transitions gives off...Ch. 11 - 11.82 A beaker of water is heated to boiling by a...Ch. 11 - Prob. 83QPCh. 11 - Calculate the amount of heat (in kJ) required to...Ch. 11 - Prob. 85QPCh. 11 - The molar heats of fusion and sublimation of...Ch. 11 - How is the rate of evaporation of a liquid...Ch. 11 - 11.88 The following compounds, listed with their...Ch. 11 - Prob. 89QPCh. 11 - A student hangs wet clothes outdoors on a winter...Ch. 11 - Explain why steam at 100°C causes more serious...Ch. 11 - What is a phase diagram? What useful information...Ch. 11 - 11.93 Explain how water’s phase diagram differs...Ch. 11 - The blades of ice skates are quite thin, so the...Ch. 11 - 11.95 A length of wire is placed on top of a block...Ch. 11 - Prob. 96QPCh. 11 - Prob. 97QPCh. 11 - 11.98 Name the kinds of attractive forces that...Ch. 11 - Prob. 99APCh. 11 - At –35°C , liquid HI has a higher vapor pressure...Ch. 11 - Prob. 101APCh. 11 - Prob. 102APCh. 11 - Prob. 103APCh. 11 - Prob. 104APCh. 11 - Prob. 105APCh. 11 - A CO 2 fire extinguisher is located on the outside...Ch. 11 - Prob. 107APCh. 11 - A flask of water is connected to a powerful vacuum...Ch. 11 - Prob. 109APCh. 11 - The interionic distances of several alkali halide...Ch. 11 - Which has a greater density, crystalline Si O 2 or...Ch. 11 - A student is given four solid samples labeled W,...Ch. 11 - Prob. 113APCh. 11 - Prob. 114APCh. 11 - X rays of wavelength 0.154 nm strike an aluminum...Ch. 11 - 11.116 The properties of gases, liquids, and...Ch. 11 - Prob. 117APCh. 11 - Prob. 118APCh. 11 - Prob. 119APCh. 11 - Prob. 120APCh. 11 - Prob. 121APCh. 11 - 11.122 The distance between and is 257 pm in...Ch. 11 - Prob. 123APCh. 11 - Prob. 124APCh. 11 - 11.125 Calculate the for the following processes...Ch. 11 - 11.126 Which liquid would you expect to have a...Ch. 11 - 11.127 A beaker of water is placed in a closed...Ch. 11 - Prob. 128APCh. 11 - Prob. 129APCh. 11 - Carbon and silicon belong to Group 4A of the...Ch. 11 - Prob. 131APCh. 11 - Prob. 132APCh. 11 - Prob. 133APCh. 11 - Prob. 134APCh. 11 - Prob. 135APCh. 11 - Prob. 136APCh. 11 - Prob. 137APCh. 11 - Prob. 138APCh. 11 - Prob. 139APCh. 11 - 11.140 Sketch the cooling curves of water from...Ch. 11 - Prob. 141APCh. 11 - Prob. 142APCh. 11 - A closed vessel of volume 9.6 L contains 2.0 g of...Ch. 11 - 11.144 The electrical conductance of copper metal...Ch. 11 - 11.145 Assuming ideal behavior, calculate the...Ch. 11 - Explain why drivers are advised to use motor oil...Ch. 11 - Which of the following compounds is most likely to...Ch. 11 - 11.148 A chemistry instructor performed the...Ch. 11 - Prob. 149APCh. 11 - Prob. 150APCh. 11 - The phase diagram of helium is shown. Helium is...Ch. 11 - 11.152 The phase diagram of sulfur is shown. (a)...Ch. 11 - Prob. 153APCh. 11 - Prob. 154APCh. 11 - Prob. 155APCh. 11 - Prob. 156APCh. 11 - Prob. 157APCh. 11 - Prob. 158APCh. 11 - 11.159 Why do citrus growers spray their trees...Ch. 11 - Prob. 2SEPPCh. 11 - 3. Each cubic unit cell (edge length a = 543 pm)...
Knowledge Booster
Similar questions
- Calculate the ionization energy of He+ and Li²+ ions in their ground states. Thannnxxxxx sirrr Ahehehehehejh27278283-4;*; shebehebbw $+$;$-;$-28283773838 hahhehdvaarrow_forwardPlleeaasseee solllveeee question 3 andd thankss sirr, don't solve it by AI plleeaasseee don't use AIarrow_forwardCalculate the chemical shifts in 13C and 1H NMR for 4-chloropropiophenone ? Write structure and label hydrogens and carbonsarrow_forward
- 4. Read paragraph 4.15 from your textbook, use your calculated lattice energy values for CuO, CuCO3 and Cu(OH)2 an explain thermal decomposition reaction of malachite: Cu2CO3(OH)2 →2CuO + H2O + CO2 (3 points)arrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forwardIII O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward
- 3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forwardWhat is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax

Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning

Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning