
Concept explainers
(a)
Calculate the average stress increase in the clay layer due to the applied load.
(a)

Answer to Problem 11.21P
The average stress increase in the clay layer
Explanation of Solution
Given information:
The foundation load
The length of the foundation
The breadth of the foundation
The depth of foundation
The height of the clay layer 1
The height of the clay layer 2
The dry unit weight of sand
The saturated unit weight
The liquid limit
Calculation:
Consider the unit weight of water
Calculate the distributed load
Substitute
Calculate the increase in vertical stress
Here,
For the depth
Calculate the width
Substitute
Calculate the ratio
Substitute
Calculate the ratio
Substitute
Similarly calculate the remaining values and tabulate as in Table 1.
Refer Table 10.11 “Variation of
Take the value of
Similarly calculate the remaining values and tabulate as in Table 1.
Calculate the increase in vertical stress
Substitute
Similarly calculate the increase in vertical stress values and tabulate as in Table 1.
Show the increase in vertical stress for each depth below the center of the loaded area as in Table 1.
Depth, | |||||
1 | 1.25 | 1.75 | 1.4 | 0.522 | 39.92 |
1 | 1.25 | 3.5 | 2.8 | 0.210 | 16.06 |
1 | 1.25 | 5.25 | 4.2 | 0.10 | 7.65 |
Table 1
Refer to table 1.
Calculate the stress increase in the clay layer
Here,
Substitute
Hence, the average stress increase in the clay layer
(b)
Calculate the primary consolidation settlement.
(b)

Answer to Problem 11.21P
The primary consolidation settlement
Explanation of Solution
Given information:
The foundation load
The length of the foundation
The breadth of the foundation
The depth of foundation
The height of the clay layer 1
The height of the clay layer 2
The dry unit weight of sand
The saturated unit weight of sand
The liquid limit
The moisture content
The specific gravity of soil solids
The preconsolidation pressure
The swell index
Calculation:
Consider the unit weight of water
The stress at the middle of the clay layer
Calculate the compression index
Substitute
Calculate the swell index
Substitute
Calculate the saturated unit weight of clay layer
Substitute
Calculate the void ratio
Substitute
Calculate the average effective stress at the middle of the clay layer
Substitute
The effective stress
Check for the condition
Substitute
Calculate the primary consolidation settlement
Substitute
Therefore, the primary consolidation settlement
(c)
Calculate the degree of consolidation after 2 years.
(c)

Answer to Problem 11.21P
The degree of consolidation after 2 years
Explanation of Solution
Given information:
The settlement after 2 years
The foundation load
The length of the foundation
The breadth of the foundation
The depth of foundation
The height of the clay layer 1
The height of the clay layer 2
Calculation:
Refer to part (b).
The primary consolidation settlement
Calculate the degree of consolidation after 2 years
Substitute
Hence, the degree of consolidation
(d)
Calculate the coefficient of consolidation for the pressure range.
(d)

Answer to Problem 11.21P
The coefficient of consolidation of the clay
Explanation of Solution
Given information:
The settlement after 2 years
The foundation load
The length of the foundation
The breadth of the foundation
The depth of foundation
The height of the clay layer 1
The height of the clay layer 2
Calculation:
Refer to part (c).
The degree of consolidation
Calculate the time factor
Refer Table 11.7 “Variation of
Take the value of
Calculate the length of maximum drainage path
Substitute
Calculate the coefficient of consolidation
Substitute
Hence, the coefficient of consolidation of the clay
(e)
Calculate the settlement in 3 years.
(e)

Answer to Problem 11.21P
The time settlement in 3 years
Explanation of Solution
Given information:
The foundation load
The length of the foundation
The breadth of the foundation
The depth of foundation
The height of the clay layer 1
The height of the clay layer 2
The time
Calculation:
Refer to part (b).
The primary consolidation settlement
Refer to part (d).
The coefficient of consolidation of the clay
Calculate the time factor
Substitute
Calculate the degree of consolidation
Refer Table 11.7 “Variation of
Take the value of
Calculate the settlement in 3 years
Substitute
Therefore, the time settlement in 3 years
Want to see more full solutions like this?
- E:/school%20pack/BENG%202/EG231/STATICS/LECTURE%20NOTES/PRACTICE%20QUESTIONS/EG%20231%20Chap-5%20Practice%20Que PDF 豆豆豆豆豆豆 aw V Aa | Ask Copilot - + 4 of 8 D 3. Calculate the y-coordinate of the centroid of the shaded area. 74 mm y 3232 mm mm DELL 32 mm -x F1 F2 F3 F4 F5 F6 F7 F8 F9 prt sc F10 home end F11 F 2 W E3 $ 4 € 95 % & 6 7 8 * 00 R T Y כ 9 O Parrow_forward*8-60. The 2-in.-diameter rod is subjected to the forces shown. Determine the state of stress at point B, and show the results on a differential element located at this point. Probs. 8-59/60 B 8 in. 600 lb 12 in. 500 lb 800 lbarrow_forwardfind SFD and BMD by using slope deflection methodarrow_forward
- The following relates to Problems 4 and 5. Christchurch, New Zealand experienced a major earthquake on February 22, 2011. It destroyed 100,000 homes. Data were collected on a sample of 300 damaged homes. These data are saved in the file called CIEG315 Homework 4 data.xlsx, which is available on Canvas under Files. A subset of the data is shown in the accompanying table. Two of the variables are qualitative in nature: Wall construction and roof construction. Two of the variables are quantitative: (1) Peak ground acceleration (PGA), a measure of the intensity of ground shaking that the home experienced in the earthquake (in units of acceleration of gravity, g); (2) Damage, which indicates the amount of damage experienced in the earthquake in New Zealand dollars; and (3) Building value, the pre-earthquake value of the home in New Zealand dollars. PGA (g) Damage (NZ$) Building Value (NZ$) Wall Construction Roof Construction Property ID 1 0.645 2 0.101 141,416 2,826 253,000 B 305,000 B T 3…arrow_forwardfind SFD and BMDarrow_forwardThe data needed to answer this question is given by this link: https://docs.google.com/spreadsheets/d/1vzb03U7Uvzm7X-by3OchQNwYeREzbP6Z-xzZMP2tzNw/edit?usp=sharing if it is easier to make a copy of the data because it is on view only then feel free to do so.arrow_forward
- The data needed to answer this question is given in the following link (file is on view only so if you would like to make a copy to make it easier for yourself feel free to do so) https://docs.google.com/spreadsheets/d/1aV5rsxdNjHnkeTkm5VqHzBXZgW-Ptbs3vqwk0SYiQPo/edit?usp=sharingarrow_forwardA k 000 6 ft A kips Bl D ft C C kips 10 ft 12 ft E B k/ft D E ft tarrow_forwardH.W: show that the equations 1. (x+y)dy+(x-y)dx = 0 2. x²dy+(y²-xy)dx = 0 are homogeneous and solve:arrow_forward
- H.W: Solve the differential equation y' - (1+x)(1 + y²) = 0arrow_forwardThe benchmark is 00.00. The backsights are 6.00, 9.32 and 13.75 and 14.00 The foresights are 6.00, 9.00 and 3.22. What is the height of the instrument? H.I. - 100.00 - 124.85 - 43.07- 24.85arrow_forwardThe benchmark is 100.00. The backsights are 4.00, 6.32 and 12.75. The foresights are 6.00, 9.00 and 3.22. What is the elevation of the point? - 95.14 - 123.08 - 104.85 - 81.78arrow_forward
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning



