Bundle: Principles Of Geotechnical Engineering, Loose-leaf Version, 9th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card
Bundle: Principles Of Geotechnical Engineering, Loose-leaf Version, 9th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card
9th Edition
ISBN: 9781337583848
Author: Braja M. Das, Khaled Sobhan
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 11, Problem 11.1P
To determine

Calculate the elastic settlement due to the net applied pressure on the foundation.

Expert Solution & Answer
Check Mark

Answer to Problem 11.1P

The elastic settlement due to the net applied pressure (Se,rigid) is 12.1mm_.

Explanation of Solution

Given information:

The vertical column load (P) is 600kN.

The length of the foundation (L) is 2m.

The breadth of the foundation (B) is 1m.

The depth of foundation (Df) is 0.75m.

The average modulus of elasticity (Es) is 20,600kN/m2.

The Poisson’s ratio (μs) is 0.3.

The depth below the foundation (H) is 5m.

Calculation:

Calculate the elastic settlement for the perfectly flexible foundation (Se,flexible) using the relation.

Se,flexible=Δσ(αB)1μs2EsIsIf (1)

Here, Δσ is the net applied pressure on the foundation, α is the factor depends on the foundation where settlement is being calculated, B is B2 for center of foundation or B for corner of foundation, Is is the shape factor, and If is the depth factor.

Calculate the net applied pressure (Δσ) as shown below.

Δσ=PL×B

Substitute 600kN for P, 2m for L, and 1m for B.

Δσ=6002×1=300kN/m2

For the center of the foundation:

The factor (α) is 4 at the center of the foundation.

Calculate B as shown below.

B=B2

Substitute 1m for B.

B=12=0.5m

Calculate the ratio (m) as shown below.

m=LB

Substitute 2m for L and 1m for B.

m=21=2

Calculate the ratio (n) as shown below.

n=HB2

Substitute 5m for H and 1m for B.

n=512=10

Calculate the shape factor (Is) using the relation.

Is=F1+12μs1μsF2 (2)

Here, F1 and F2 are the factors and a function of m and n.

Calculate the factor (F1) as follows.

Refer Table 11.1 “Variation of F1 with m and n” in the Text Book.

Take the value of F1 as 0.641, for the values m of 2 and n of 10.

Calculate the factor (F2) as follows.

Refer Table 11.2 “Variation of F2 with m and n” in the Text Book.

Take the value of F2 as 0.031, for the values m of 2 and n of 10.

Calculate the shape factor (Is) as shown below.

Substitute 0.641 for F1, 0.031 for F2, and 0.3 for μs in Equation (2).

Is=0.641+(12×0.310.3)×0.031=0.641+0.018=0.659

Calculate the ratio DfB as shown below.

Substitute 0.75m for Df and 1m for B.

DfB=0.751=0.75

Calculate the ratio LB as shown below.

Substitute 2m for L and 1m for B.

LB=21=2

Calculate the depth factor (If) as follows.

Refer Table 11.3 “Variation of If with LB and DfB” in the Text Book.

Take the value of If as 0.75, for the values LB of 2, DfB of 0.75, and μs of 0.3.

Calculate the elastic settlement for the perfectly flexible foundation (Se,flexible) as shown below.

Substitute 300kN/m2 for Δσ, 4 for α, 0.5m for B, 0.3 for μs, 20,600kN/m2 for Es, 0.659 for Is, and 0.75 for If.

Se,flexible=300×4×0.5(10.3220,600)×0.659×0.75=296.55×4.417×105=0.013m

Calculate the elastic settlement for the rigid foundation (Se,rigid) as shown below.

Se,rigid=0.93Se,flexible

Substitute 0.013m for Se,flexible.

Se,rigid=0.93×0.013=0.01209m×1,000mm1m=12.1mm

Therefore, the elastic settlement due to the net applied pressure (Se,rigid) is 12.1mm_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The following figure is a flexible pavement system with the resilient moduli layer coefficients and drainage coefficients as shown. If the predicted ESAL = 6x106, Reliability, R = 99%, Standard Deviation (So) = 0.45, and APSI = 2.5, select thicknesses D1, D2, and D3 in accordance with the AASHTO Guide for Design of Pavement Structures. E₁ = 400, 000 psi; a₁ = 0.42, Thickness = D₁ E₂=30,000 psi; a₂= 0.14, m₂ = 1.2; Thickness = Dz E=11,000 psi; a=0.08, m3 = 1.2; Thickness = D3 MR= 5,700 psi
Diagramtically show the placement, size, and spacing of temperature steels, dowel bars and tie bars in rigid pavements. Also mention their puproses in rigid pavements.
A six-lane concrete roadway is being designed for a metropolitan area. This roadway will be constructed on a subgrade with an effective modulus of subgrade reaction k of 200 lb/in^3. The ESALs used for the design period is 6.0×10^6. Using the AASHTO design method, determine a suitable thickness of the concrete pavement (to the nearest 1/2 inch), provided that the working stress of the concrete to be used is 600 lb/in^2 and the modulus of elasticity is 6×10^6 lb/in^2. Assume the initial serviceability is 5.0 and the terminal serviceability is 2.0. Assume the overall standard deviation, So, is 0.35, the load transfer coefficient J as 3.2, the drainage coefficient, Cd, is 1.15, and R = 99%.
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Text book image
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning