a.
The value of
a.
Answer to Problem 11.1P
The value of synchronous angular radial frequency is
The value of synchronous angular velocity of rotor is
Explanation of Solution
Given:
A three-phase steam turbine-generating unit having
Frequency,
MVA rating,
Rated voltage,
Poles,
Inertia constant,
Formula Used:
The synchronous angular radial frequency is expressed as,
Where
The synchronous angular velocity of rotor is expressed as,
Where
Calculation:
To determine the value of synchronous angular radial frequency
To determine the value of synchronous angular velocity of rotor
Conclusion:
The value of synchronous angular radial frequency is
The value of synchronous angular velocity of rotor is
b.
The kinetic energy in joules stored in the rotating mass a synchronous speed.
b.
Answer to Problem 11.1P
The kinetic energy in joules stored in the rotating mass at synchronous speed is
Explanation of Solution
Given:
A three-phase steam turbine-generating unit having
Frequency,
MVA rating,
Rated voltage,
Poles,
Inertia constant,
FormulaUsed:
The kinetic energy in joules stored in the rotating mass at synchronous speed is expressed by
Where
Calculation:
To calculate the value of kinetic energy in joules stored in the rotating mass at synchronous speed, substitute the values of
Conclusion:
The kinetic energy in joules stored in the rotating mass at synchronous speed is
c.
The
c.
Answer to Problem 11.1P
The mechanical angular acceleration is
Explanation of Solution
Given:
A three-phase steam turbine-generating unit having
Frequency,
MVA rating,
Rated voltage,
Poles,
Inertia constant,
Accelerating power,
FormulaUsed:
The power swing equation is expressed as,
Where
The mechanical angular acceleration is expressed as,
Where
Calculation:
Assume the base power to be 500 MW.
So the per unit accelerating power
And the per unit angular frequency
Now, rearrange the equation (3) for
To calculate the value of mechanical angular acceleration, substitute the values in equation (4)
Conclusion:
The mechanical angular acceleration is
Want to see more full solutions like this?
Chapter 11 Solutions
EBK POWER SYSTEM ANALYSIS AND DESIGN
- Don't use ai to answer I will report you answerarrow_forwardDO NOT USE AI OR CHATGPT NEED HAND WRITTEN ANSWERarrow_forward6 Multiple Choice 10 points Use the measured characteristics given in the figure. From the curves shown, this is 220V Start 160V Start 190V Start, DC series motor DC shunt motor DC separately excited motor DC series generator 160V Start 220V Start 190V Startarrow_forward
- 000 . Use the measured characteristics given in the figure. For Delta connected motor, the maximum load (N.m) you can put at starting is " 28 " 24 22 28 24 18 14 13 3.4 2.8 3.6 0.9 1800arrow_forwardCan I have a written solutionarrow_forwardA 100-kVA, 2500/125-V, 50-Hz, step-down transformer has the following parameters: R1= 1.5Ω, X1= 2.8Ω, R2= 15mΩ, X2=20mΩ, Rc1= 3kΩ, Xm1= 5kΩ The transformer delivers 85% of the rated load at a terminal voltage of 115 V and a power factor of 0.866 lagging. Determine (a) the efficiency, and (b) the voltage regulation. Draw the phasor diagram of the transformer. Use the approximate equivalent circuit referred to the secondary side.arrow_forward
- Don't use ai to answer I will report you answerarrow_forwardDon't use ai to answer I will report you answer.arrow_forwardPV station 8.6 Consider the microgrid given in Figure 8.56. The positive sequence impedance of the transmission lines is given in the one-line diagram (Figure 8.56). The system data are as follows: PV generating station: 2 MW, 460 V AC; positive, negative, and zero sequence impedance of each line is equal to 10%. The gas turbine gen- erating station is rated at 10 MVA, 3.2 kV, with positive sequence reac- tance of 10%. The generator negative sequence impedance is equal to the positive sequence, and the zero sequence impedance is equal to half (1/2) of the positive sequence impedance. Transformers' positive sequence impedance is equal to the negative sequence and equal to the zero sequence impedance. DC/AC 3 CB T₁ AC PV bus YA 6 1+/10 20 CB CB CB m 0.5+15 личи 5 A S5 2 Gas turbine 0.3+16 7 ww NA Local S6 ST utility Figure 8.56 A one-line diagram for Problem 8.6.arrow_forward
- Can you calculate the needed values. When it ask me to measure the values do I attach the function generator and use the values mentioned below? or do i leave the function generator off and measure? Any tips on how to connect the multimeters would be appreciated but not primary request.arrow_forwardDon't use ai to answer I will report you answerarrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning