a.
The value of
a.
Answer to Problem 11.1P
The value of synchronous angular radial frequency is
The value of synchronous angular velocity of rotor is
Explanation of Solution
Given:
A three-phase steam turbine-generating unit having
Frequency,
MVA rating,
Rated voltage,
Poles,
Inertia constant,
Formula Used:
The synchronous angular radial frequency is expressed as,
Where
The synchronous angular velocity of rotor is expressed as,
Where
Calculation:
To determine the value of synchronous angular radial frequency
To determine the value of synchronous angular velocity of rotor
Conclusion:
The value of synchronous angular radial frequency is
The value of synchronous angular velocity of rotor is
b.
The kinetic energy in joules stored in the rotating mass a synchronous speed.
b.
Answer to Problem 11.1P
The kinetic energy in joules stored in the rotating mass at synchronous speed is
Explanation of Solution
Given:
A three-phase steam turbine-generating unit having
Frequency,
MVA rating,
Rated voltage,
Poles,
Inertia constant,
FormulaUsed:
The kinetic energy in joules stored in the rotating mass at synchronous speed is expressed by
Where
Calculation:
To calculate the value of kinetic energy in joules stored in the rotating mass at synchronous speed, substitute the values of
Conclusion:
The kinetic energy in joules stored in the rotating mass at synchronous speed is
c.
The
c.
Answer to Problem 11.1P
The mechanical angular acceleration is
Explanation of Solution
Given:
A three-phase steam turbine-generating unit having
Frequency,
MVA rating,
Rated voltage,
Poles,
Inertia constant,
Accelerating power,
FormulaUsed:
The power swing equation is expressed as,
Where
The mechanical angular acceleration is expressed as,
Where
Calculation:
Assume the base power to be 500 MW.
So the per unit accelerating power
And the per unit angular frequency
Now, rearrange the equation (3) for
To calculate the value of mechanical angular acceleration, substitute the values in equation (4)
Conclusion:
The mechanical angular acceleration is
Want to see more full solutions like this?
Chapter 11 Solutions
Power System Analysis and Design (MindTap Course List)
- Q2: A 208V, Y-connected synchronous motor is drawing 40A at unity power factor from a 208V power system. The field current flowing under these conditions is 2.7A. Its synchronous reactance is 0.82 and its armature resistance is 0.2 2. Assume a linear open-circuit characteristic. 1- Find EA and the torque angle. 2- How much field current would be required to make the motor operate at 0.8 PF lagging. 3- How much field current would be required to make the motor operate at 0.8 PF leading. 4- How much field current would be required to make the motor operate at unity PF.arrow_forward6) For each case find the answer: 2 (a) If q (t) = 2+ + 6 + + 3 Coulombs Find i(t) at t = 4 seconds (b) If i(t) = 4 Amperes If Find q (t) for 25 = ≤6 seconds (c) If w(t) = 5t³ Joules Find p(t) at t = 3 seconds (d) If p(t 2t+3+4 Watts Find w(t) for 1st≤5 secondsarrow_forwardAs we will learn in Chapter 8, to maximize the transfer of power from an input circuit to a load ZL, it is necessary to choose ZL such that it is equal to the complex conjugate of the impedance of the input circuit. For the circuit in Fig. P7.50, such a condition translates into requiring ZL = Zth*. Determine ZL such that it satisfies this condition.arrow_forward
- 7.44 In the circuit of Fig. P7.44, what should the value of L be 104 rad/s so that i(t) is in-phase with u,(t)? at i(t) 50 Ω www Ds(f) z- 25 Ω 4μF L b Figure P7.44 Circuit for Problem 7.44.arrow_forward5) An orbiting satellite has both solar panels and a 48-volt battery on board. The instrumentation package has sent the following data regarding supplied Coulombs vs. minutes for the 48 volt battery on the Satellite Coulombs 3.5 3 25 2 15 05 O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6 minutes (a) what is the battery current at t=0-5 minute: (6) How much power is the battery supplying at 0.5 Minutes? (c) Between 2 and 3 minutes how much poner does the battery supply? (d) Between 3 and 4 minutes what current is produced by the battery?arrow_forward7.36 Find the input impedance Z of the circuit in Fig. P7.36 at 0 400 rad/s. 502 3 mH ww m Z→ 2 mF b 5025 ww ell Figure P7.36 Circuit for Problem 7.36. 9 mHarrow_forward
- An evening meal is being prepared in a home kitchen containing an electric oven and a microwave oven. The cost for electricity in the home's neighborhood is $0.15 per kilowatt hour. The microwave oven is specified as a 1000 watt unit, while the oven requires 240 volts and uses a current of 30 amperes to cook at 350 degrees Fahrenheit. A frozen meal can be cooked in the microwave oven set on full power in 10 minutes. The same frozen meal cooked in the electric oven set for 350 degrees F takes 40 minutes. (a) How much energy does it take to cook the frozen meal in the microwave at full power and how much does it cost? (b) How much energy does it take to cook the frozen meal in the electric oven at 350 degrees Fahrenheit and how much does it cost?arrow_forwardDon't use ai to answer I will report you answerarrow_forwardAn electrical substation had a sudden discharge arc event lasting 0.005 seconds. The event produced 768,000 volts that conducted 500 amperes to a nearby grounded metal strap and opened a 500 ampere protective breaker. (a) How much power was produced by the electrical discharge? (b) How much energy was in the discharge? (c) How long could a 75 watt light bulb stay lit, if all the energy in the arc was used to operate it?arrow_forward
- I need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forwardFind Rth at open terminals using a 1V test source.arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Introduction to Signals and Systems)arrow_forward
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning