Concept explainers
(a)
Calculate the total consolidation settlement under the action of fill load.
(a)
Answer to Problem 11.1CTP
The total consolidation settlement
Explanation of Solution
Given information:
The thickness of fill material
The compacted unit weight of fill material
The length of the foundation
The breadth of the foundation
The depth of fill
The height of the layer silty sand
The height of the clay layer
The height of the peat layer
The dry unit weight of sand
The saturated unit weight of sand
The saturated unit weight of clay
The saturated unit weight of peat
The time
The properties of clay and organic layers are given in the Table.
Calculation:
Consider the unit weight of water
Calculate the distributed load
Substitute
Calculate the increase in vertical stress
Here,
For clay layer:
For the depth
Calculate the width
Substitute
Calculate the ratio
Substitute
Calculate the ratio
Substitute
Similarly calculate the remaining values and tabulate as in Table 1.
Refer Table 10.11 “Variation of
Take the value of
Take the value of
Calculate the value of
Similarly calculate the remaining values and tabulate as in Table 1.
Calculate the increase in vertical stress
Substitute
Similarly calculate the increase in vertical stress values and tabulate as in Table 1.
Show the increase in vertical stress for each depth below the center of the loaded area as in Table 1.
Depth, | |||||
1 | 4 | 3 | 0.75 | 0.823 | 28.82 |
1 | 4 | 5 | 1.25 | 0.599 | 20.98 |
1 | 4 | 7 | 1.75 | 0.403 | 14.11 |
Table 1
Refer to table 1.
Calculate the stress increase in the clay layer
Here,
Substitute
Calculate the average effective stress at the middle of the clay layer
Substitute
Calculate the primary consolidation settlement
Substitute
For peat layer:
For the depth
Calculate the ratio
Substitute
Similarly calculate the remaining values and tabulate as in Table 2.
Refer Table 10.11 “Variation of
Take the value of
Take the value of
Calculate the value of
Similarly calculate the remaining values and tabulate as in Table 2.
Calculate the increase in vertical stress
Substitute
Similarly calculate the increase in vertical stress values and tabulate as in Table 2.
Show the increase in vertical stress for each depth below the center of the loaded area as in Table 2.
Depth, | |||||
1 | 4 | 7 | 1.75 | 0.403 | 14.11 |
1 | 4 | 7.9 | 1.975 | 0.342 | 11.98 |
1 | 4 | 8.8 | 2.2 | 0.302 | 10.58 |
Table 2
Refer to table 2.
Calculate the stress increase in the peat layer
Substitute
Calculate the average effective stress at the middle of the clay layer
Substitute
Calculate the primary consolidation settlement
Substitute
Calculate the total consolidation settlement under the action of fill load
Substitute
Hence, the total consolidation settlement
(b)
Calculate the time for
(b)
Answer to Problem 11.1CTP
The time for
The time for
Explanation of Solution
Given information:
The thickness of fill material
The compacted unit weight of fill material
The length of the foundation
The breadth of the foundation
The depth of fill
The height of the layer silty sand
The height of the clay layer
The height of the peat layer
The dry unit weight of sand
The saturated unit weight of sand
The saturated unit weight of clay
The saturated unit weight of peat
The time
The properties of clay and organic layers are given in the Table.
Calculation:
The degree of consolidation
The clay layer is permeable and having less void ratio compared to peat layer. Hence, double drainage condition is assumed for the clay layer.
Calculate the time factor
Refer Table 11.7 “Variation of
Take the value of
Calculate the length of maximum drainage path
Substitute
Calculate the time for
Substitute
Hence, the time for
The peat layer is low permeable and having high void ratio compared to clay layer. Hence, single drainage condition is assumed for the peat layer.
Calculate the length of maximum drainage path
Substitute
Calculate the time for
Substitute
Hence, the time for
(c)
Calculate the secondary compression in each layer up to end of
(c)
Answer to Problem 11.1CTP
The secondary compression for clay
The secondary compression for peat
Explanation of Solution
Given information:
The thickness of fill material
The compacted unit weight of fill material
The length of the foundation
The breadth of the foundation
The depth of fill
The height of the layer silty sand
The height of the clay layer
The height of the peat layer
The dry unit weight of sand
The saturated unit weight of sand
The saturated unit weight of clay
The saturated unit weight of peat
The time
The properties of clay and organic layers are given in the Table.
Calculation:
Refer to part (b).
The time for
The time for
For clay:
Calculate the primary void ratio
Substitute
Calculate the void ratio at the end of primary consolidation
Substitute
Calculate the magnitude of secondary compression index
Here,
Substitute
Calculate the secondary compression
Substitute
Hence, the secondary compression for clay
For peat:
Calculate the primary void ratio
Substitute
Calculate the void ratio at the end of primary consolidation
Substitute
Calculate the magnitude of secondary compression index
Substitute
Calculate the secondary compression
Substitute
Hence, the secondary compression for peat
(d)
Calculate the total settlement after 18 months.
(d)
Answer to Problem 11.1CTP
The total settlement after 18 months is
Explanation of Solution
Given information:
The thickness of fill material
The compacted unit weight of fill material
The length of the foundation
The breadth of the foundation
The depth of fill
The height of the layer silty sand
The height of the clay layer
The height of the peat layer
The dry unit weight of sand
The saturated unit weight of sand
The saturated unit weight of clay
The saturated unit weight of peat
The time
The properties of clay and organic layers are given in the Table.
Calculation:
Refer to part (a).
The total consolidation settlement
Refer to part (c).
The secondary compression for clay
The secondary compression for peat
Calculate the total settlement after 18 months as shown below.
Substitute
Hence, the total settlement after 18 months is
(e)
Calculate the excess pore water pressure at point A two months after the application of the fill load.
(e)
Answer to Problem 11.1CTP
The excess pore water pressure at point A
Explanation of Solution
Given information:
The thickness of fill material
The compacted unit weight of fill material
The length of the foundation
The breadth of the foundation
The depth of fill
The height of the layer silty sand
The height of the clay layer
The height of the peat layer
The dry unit weight of sand
The saturated unit weight of sand
The saturated unit weight of clay
The saturated unit weight of peat
The time
The properties of clay and organic layers are given in the Table.
The depth
Calculation:
Refer to part (a).
The pore water pressure
Calculate the length of maximum drainage path
Substitute
Calculate the time factor
Substitute
Calculate the ratio
Substitute
Calculate the degree of consolidation
Refer Figure 11.29 “Variation of
Take the value of U as
Calculate the excess pore water pressure after 2 months
Substitute
Hence, the excess pore water pressure at point A
(f)
Calculate the effective stress at point A two months after the application of the fill load.
(f)
Answer to Problem 11.1CTP
The effective stress at point A is
Explanation of Solution
Given information:
The thickness of fill material
The compacted unit weight of fill material
The length of the foundation
The breadth of the foundation
The depth of fill
The height of the layer silty sand
The height of the clay layer
The height of the peat layer
The dry unit weight of sand
The saturated unit weight of sand
The saturated unit weight of clay
The saturated unit weight of peat
The time
The properties of clay and organic layers are given in the Table.
The depth
Calculation:
Refer to part (a).
The pore water pressure
Refer to part (e)
The excess pore water pressure at point A
Calculate the increase in effective stress
Substitute
Calculate the average effective stress at the point A
Substitute
Calculate the final effective stress at point A as shown below.
Substitute
Hence, the effective stress at point A is
(g)
Calculate the piezometer reading at point A two months after the application of the fill load.
(g)
Answer to Problem 11.1CTP
The piezometer reading at point A is
Explanation of Solution
Given information:
The thickness of fill material
The compacted unit weight of fill material
The length of the foundation
The breadth of the foundation
The depth of fill
The height of the layer silty sand
The height of the clay layer
The height of the peat layer
The dry unit weight of sand
The saturated unit weight of sand
The saturated unit weight of clay
The saturated unit weight of peat
The time
The properties of clay and organic layers are given in the Table.
The depth
Calculation:
Refer to part (e)
The excess pore water pressure at point A
The piezometer reading is the total pore water pressure.
Calculate the piezometer reading
Substitute
Hence, the piezometer reading at point A is
Want to see more full solutions like this?
Chapter 11 Solutions
PRINCIPLES OF GEOTECH.ENGINEERING >LL+M
- A floor consists of 8 steel beams/girders supporting three 1-way slab panels. The beams are supported on 6 columns around the perimeter of the roof. The roof is subjected to a uniform pressure of 150 psf . All beams and girders weigh 90lb//ft. Use free-body diagrams and statics equations to determine the load and reactions on all the beams (Beam 1, 2, 3 and 4), girders (Girders 1 and 2), and columns (Columns 1, 2 and 3). (we only focused on one-way slabs in the class + pls include FBDs)arrow_forwardDesign an intake tower with gates meet the following requirement: • Normal water surface elevation = 100 m mean sea level • Max. reservoir elevation = 106 m msl • Min. reservoir elevation = 90 m msl • Bottom elevation = 81m msl • Flow rate=57369.6 m³/day.. Velocity = 0.083 m/s ⚫c=0.6, Density for water =1000 kg/m³. Density for concrete =2310 kg/m³ Estimate water elevation that make safety factor =1 ร 4 m Uppr gate 2m 1 m Lower gate 2m Gate 6m 2m 4 m ร 2 m wzarrow_forward4. The storm hyetograph below produced 530 acre-ft of runoff over the 725-acre Green River watershed. Plot the storm hyetograph and compute and plot the excess rainfall hyetograph using the op-index method. Time (hours) 0-33-66-99-12 12-15 Rainfall Intensity (in/hr) 0.2 0.8|1.2 1.8 0.9arrow_forward
- -125 mm -125 mm -125 mm 100 mm P A C 310 x 45 made of A36 is connected to a plate and carries a load P in tension. The bolts are 22-mm in diameter and is staggered as shown in figure PSAD-016. Properties of C 310 x 45 A = 5680 mm² d = 305 mm t = 12.7 mm tw = 13.0 mm b = 80.5 mm x = 17.1 mm Determine the shear lag factor of the channel. Determine the effective net area of the section in mm². Compute the design capacity of the section.arrow_forwardPlease answer the following and show the step by step answer on clear paperarrow_forwardProblem #1 (Beam optimization). Calculate the length "a" of AB such that the bending moment diagram is optimized (the absolute value of the max and the min is at its lowest). Then draw the shear and moment diagram for the optimized length. Optimize the length to the nearest 0.1 m. You can use RISA 2D as a tool to find the optimized length, however you need to solve for the support reactions at A, B and C by hand and draw the shear and moment diagram by hand. w=20 kN/m A + + a 12 m B Carrow_forward
- 2. Using the Green-Ampt Model, compute the infiltration rate, f, and cumulative infiltration, F, after one hour of infiltration into a sandy clay loam soil. Assume initial moisture conditions are midway between the field capacity and wilting point and that water is ponded to a small but negligible depth on the surface.arrow_forwardAssignment 1 Q1) Determine the member end forces of the frames shown by utilizing structural symmetry and anti-symm. (Derive each member forces and show BMD,SD,AFD) 20 kN/m 40 kN/m C D Hinge Ẹ G A -3m 5m B 5 m 3 m- E, I, A constant 12 marrow_forwardA1.3- Given the floor plan shown in Figure 3. The thickness of the slab is 150mm. The floor finish, ceiling and partition load is 1.8 kN/m². The live load on the floor is 2.4 kN/m². The beams cross section dimension is 300mmx600mm. Assuming the unit weight of concrete is equal to 24 kN/m². It is required to: a) Show tributary areas for all the beams on the plan; b) Calculate the load carried by beams B1 (on gridline A, between 1 and 3), B2 (on gridline B, between 1 and 3)and B3 (on gridline 3, between A and C); c) Calculate the load carried by column C1 per floor (ignore the self weight of the column). A 1 B1 2 B2 B Cl 8.0 m Figure 3 8.0 m B3 23 3 *2.0m 5.0 m 4.0 m +1.5m+arrow_forward
- Please show all steps and make sure to use the type of coordinate system (tangential/normal) specified.arrow_forwardFind required inlet length to intercept the entire flow and the capacity of a 3m long curb inlet. A gutter with z=20, n=0.015 and a slope of %1 caring a flow of 0.25 S m³/s curb depression (a=60 mm). Assume the only %75 of the upstream flow will be intercepted, what the length of curb inlet will be needed.arrow_forwardPlease answer this and show me the step by step solutiarrow_forward
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning