
Differential Equations with Boundary-Value Problems (MindTap Course List)
9th Edition
ISBN: 9781305965799
Author: Dennis G. Zill
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 11, Problem 10RE
To determine
To explain: The reason why the value of
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
12.42 The steady-state distribution of temperature on a heated
plate can be modeled by the Laplace equation,
0=
FT T
+
200°C
25°C
25°C
T22
0°C
T₁
T21
200°C
FIGURE P12.42
75°C
75°C
00°C
If the plate is represented by a series of nodes (Fig. P12.42), cen-
tered finite-divided differences can be substituted for the second
derivatives, which results in a system of linear algebraic equations.
Use the Gauss-Seidel method to solve for the temperatures of the
nodes in Fig. P12.42.
9.22 Develop, debug, and test a program in either a high-level language or a macro
language of your choice to solve a system of equations with Gauss-Jordan elimination
without partial pivoting. Base the program on the pseudocode from Fig. 9.10. Test the
program using the same system as in Prob. 9.18. Compute the total number of flops in
your algorithm to verify Eq. 9.37.
FIGURE 9.10
Pseudocode to implement the
Gauss-Jordan algorithm with-
out partial pivoting.
SUB GaussJordan(aug, m, n, x)
DOFOR k = 1, m
d = aug(k, k)
DOFOR j = 1, n
aug(k, j) = aug(k, j)/d
END DO
DOFOR 1 = 1, m
IF 1 % K THEN
d = aug(i, k)
DOFOR j = k, n
aug(1, j)
END DO
aug(1, j) - d*aug(k, j)
END IF
END DO
END DO
DOFOR k = 1, m
x(k) = aug(k, n)
END DO
END GaussJordan
11.9 Recall from Prob. 10.8, that the following system of equations
is designed to determine concentrations (the e's in g/m³) in a series
of coupled reactors as a function of amount of mass input to each
reactor (the right-hand sides are in g/day):
15c3cc33300
-3c18c26c3 = 1200
-4c₁₂+12c3 = 2400
Solve this problem with the Gauss-Seidel method to & = 5%.
Chapter 11 Solutions
Differential Equations with Boundary-Value Problems (MindTap Course List)
Ch. 11.1 - In problem 16 show that the given functions are...Ch. 11.1 - In problem 16 show that the given functions are...Ch. 11.1 - In problem 16 show that the given functions are...Ch. 11.1 - In problem 16 show that the given functions are...Ch. 11.1 - In problem 16 show that the given functions are...Ch. 11.1 - Prob. 6ECh. 11.1 - Prob. 7ECh. 11.1 - In Problems 712 show that the given set of...Ch. 11.1 - In Problems 712 show that the given set of...Ch. 11.1 - In Problems 712 show that the given set of...
Ch. 11.1 - In Problems 712 show that the given set of...Ch. 11.1 - In Problems 712 show that the given set of...Ch. 11.1 - In Problems 13 and 14 verify by direct integration...Ch. 11.1 - In Problems 13 and 14 verify by direct integration...Ch. 11.1 - Let {n(x)} be an orthogonal set of functions on...Ch. 11.1 - Let {n(x)} be an orthogonal set of functions on...Ch. 11.1 - Let {n(x)} be an orthogonal set of functions on...Ch. 11.1 - From Problem 1 we know that f1(x) = x and f2(x) =...Ch. 11.1 - A real-valued function is said to be periodic with...Ch. 11.1 - A real-valued function is said to be periodic with...Ch. 11.1 - Prob. 21ECh. 11.1 - A real-valued function is said to be periodic with...Ch. 11.1 - A real-valued function is said to be periodic with...Ch. 11.1 - A real-valued function is said to be periodic with...Ch. 11.1 - Prob. 25ECh. 11.1 - Prob. 26ECh. 11.1 - Prob. 27ECh. 11.1 - Relate the orthogonal set B in Problem 27 with a...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 1–16 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - Prob. 13ECh. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 116 find the Fourier series of f on...Ch. 11.2 - In Problems 17 and 18 sketch the periodic...Ch. 11.2 - In Problems 17 and 18 sketch the periodic...Ch. 11.2 - Use the result of Problem 5 to show that...Ch. 11.2 - Prob. 20ECh. 11.2 - Use the result of Problem 7 to show that...Ch. 11.2 - Prob. 22ECh. 11.2 - Prob. 23ECh. 11.2 - Prob. 24ECh. 11.3 - In Problems 110 determine whether the function is...Ch. 11.3 - Prob. 2ECh. 11.3 - In Problems 110 determine whether the function is...Ch. 11.3 - In Problems 110 determine whether the function is...Ch. 11.3 - Prob. 5ECh. 11.3 - Prob. 6ECh. 11.3 - Prob. 7ECh. 11.3 - Prob. 8ECh. 11.3 - Prob. 9ECh. 11.3 - Prob. 10ECh. 11.3 - In Problems 1124 expand the given function in an...Ch. 11.3 - In Problems 1124 expand the given function in an...Ch. 11.3 - In Problems 1124 expand the given function in an...Ch. 11.3 - In Problems 1124 expand the given function in an...Ch. 11.3 - Prob. 15ECh. 11.3 - In Problems 11-24 expand the given function in an...Ch. 11.3 - Prob. 17ECh. 11.3 - In Problems 11-24 expand the given function in an...Ch. 11.3 - In Problems 11-24 expand the given function in an...Ch. 11.3 - In Problems 1-10 determine whether the function is...Ch. 11.3 - In Problems 1-10 determine whether the function is...Ch. 11.3 - In Problems 1124 expand the given function in an...Ch. 11.3 - In Problems 1124 expand the given function in an...Ch. 11.3 - Prob. 24ECh. 11.3 - In Problems 2534 find the half-range cosine and...Ch. 11.3 - Prob. 26ECh. 11.3 - Prob. 27ECh. 11.3 - In Problems 2534 find the half-range cosine and...Ch. 11.3 - Prob. 29ECh. 11.3 - Prob. 30ECh. 11.3 - Prob. 31ECh. 11.3 - In Problems 2534 find the half-range cosine and...Ch. 11.3 - In Problems 2534 find the half-range cosine and...Ch. 11.3 - Prob. 34ECh. 11.3 - In Problems 3538 expand the given function in a...Ch. 11.3 - In Problems 3538 expand the given function in a...Ch. 11.3 - Prob. 37ECh. 11.3 - In Problems 3538 expand the given function in a...Ch. 11.3 - Prob. 39ECh. 11.3 - In Problems 3942 suppose the function y = f(x), 0 ...Ch. 11.3 - In Problems 3942 suppose the function y = f(x), 0 ...Ch. 11.3 - Prob. 42ECh. 11.3 - In Problems 43 and 44 proceed as in Example 4 to...Ch. 11.3 - In Problems 43 and 44 proceed as in Example 4 to...Ch. 11.3 - Prob. 45ECh. 11.3 - Prob. 46ECh. 11.3 - Suppose a uniform beam of length L is simply...Ch. 11.3 - Prob. 50ECh. 11.3 - Prob. 51ECh. 11.3 - Prob. 52ECh. 11.3 - Prob. 53ECh. 11.3 - Prob. 54ECh. 11.4 - Consider y + y = 0 subject to y(0) = 0, y(L) = 0....Ch. 11.4 - Consider y + y = 0 subject to the periodic...Ch. 11.4 - Prob. 5ECh. 11.4 - Prob. 6ECh. 11.4 - (a) Find the eigenvalues and eigenfunctions of the...Ch. 11.4 - (a) Find the eigenvalues and eigenfunctions of the...Ch. 11.4 - Laguerres differential equation xy + (1 x)y + ny...Ch. 11.4 - Hermites differential equation y2xy+2ny=0,n=0,1,2,...Ch. 11.4 - Consider the regular Sturm-Liouville problem:...Ch. 11.4 - (a) Find the eigenfunctions and the equation that...Ch. 11.4 - Prob. 13ECh. 11.5 - Prob. 1ECh. 11.5 - Prob. 2ECh. 11.5 - Prob. 3ECh. 11.5 - Prob. 4ECh. 11.5 - In Problems 36 expand f(x) = 1, 0 x 2, in a...Ch. 11.5 - In Problems 36 expand f(x) = 1, 0 x 2, in a...Ch. 11.5 - In Problems 7-10 expand the given function in a...Ch. 11.5 - Prob. 8ECh. 11.5 - Prob. 9ECh. 11.5 - Prob. 10ECh. 11.5 - Prob. 13ECh. 11.5 - Prob. 14ECh. 11.5 - In Problems 15 and 16 write out the first five...Ch. 11.5 - Prob. 16ECh. 11.5 - Prob. 17ECh. 11.5 - Prob. 18ECh. 11.5 - Prob. 19ECh. 11.5 - Prob. 20ECh. 11.5 - Prob. 21ECh. 11.5 - Prob. 22ECh. 11.5 - Prob. 23ECh. 11.5 - Prob. 24ECh. 11 - In Problems 16 fill in the blank or answer true or...Ch. 11 - Prob. 2RECh. 11 - Prob. 3RECh. 11 - Prob. 4RECh. 11 - Prob. 5RECh. 11 - Prob. 6RECh. 11 - Prob. 7RECh. 11 - Prob. 8RECh. 11 - Prob. 9RECh. 11 - Prob. 10RECh. 11 - Prob. 11RECh. 11 - Prob. 12RECh. 11 - Prob. 13RECh. 11 - Prob. 14RECh. 11 - Prob. 15RECh. 11 - Prob. 16RECh. 11 - Prob. 17RECh. 11 - Consider the portion of the periodic function f...Ch. 11 - Prob. 19RECh. 11 - Find the eigenvalues and eigenfunctions of the...Ch. 11 - Prob. 21RECh. 11 - Prob. 22RECh. 11 - Prob. 23RECh. 11 - Prob. 24RECh. 11 - Prob. 25RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 9.8 Given the equations 10x+2x2-x3 = 27 -3x-6x2+2x3 = -61.5 x1 + x2 + 5x3 = -21.5 (a) Solve by naive Gauss elimination. Show all steps of the compu- tation. (b) Substitute your results into the original equations to check your answers.arrow_forwardTangent planes Find an equation of the plane tangent to the following surfaces at the given points (two planes and two equations).arrow_forwardVectors u and v are shown on the graph.Part A: Write u and v in component form. Show your work. Part B: Find u + v. Show your work.Part C: Find 5u − 2v. Show your work.arrow_forward
- Vectors u = 6(cos 60°i + sin60°j), v = 4(cos 315°i + sin315°j), and w = −12(cos 330°i + sin330°j) are given. Use exact values when evaluating sine and cosine.Part A: Convert the vectors to component form and find −7(u • v). Show every step of your work.Part B: Convert the vectors to component form and use the dot product to determine if u and w are parallel, orthogonal, or neither. Justify your answer.arrow_forwardSuppose that one factory inputs its goods from two different plants, A and B, with different costs, 3 and 7 each respective. And suppose the price function in the market is decided as p(x, y) = 100 - x - y where x and y are the demand functions and 0 < x, y. Then as x = y= the factory can attain the maximum profit,arrow_forwardBob and Teresa each collect their own samples to test the same hypothesis. Bob’s p-value turns out to be 0.05, and Teresa’s turns out to be 0.01. Why don’t Bob and Teresa get the same p-values? Who has stronger evidence against the null hypothesis: Bob or Teresa?arrow_forward
- f(x) = = x - 3 x²-9 f(x) = {x + 1 x > 3 4 x < 3 -10 5 10 5 5. 10 5- 07. 10 -10 -5 0 10 5 -101 :: The function has a “step" or "jump" discontinuity at x = 3 where f(3) = 7. :: The function has a value of f (3), a limit as x approaches 3, but is not continuous at x = 3. :: The function has a limit as x approaches 3, but the function is not defined and is not continuous at x = 3. :: The function has a removable discontinuity at x=3 and an infinite discontinuity at x= -3.arrow_forwardReview a classmate's Main Post. 1. State if you agree or disagree with the choices made for additional analysis that can be done beyond the frequency table. 2. Choose a measure of central tendency (mean, median, mode) that you would like to compute with the data beyond the frequency table. Complete either a or b below. a. Explain how that analysis can help you understand the data better. b. If you are currently unable to do that analysis, what do you think you could do to make it possible? If you do not think you can do anything, explain why it is not possible.arrow_forwardCalculus lll May I please have the solutions for the following examples? Thank youarrow_forward
- Calculus lll May I please have the solutions for the following exercises that are blank? Thank youarrow_forwardThe graph of 2(x² + y²)² = 25 (x²-y²), shown in the figure, is a lemniscate of Bernoulli. Find the equation of the tangent line at the point (3,1). -10 Write the expression for the slope in terms of x and y. slope = 4x³ + 4xy2-25x 2 3 4x²y + 4y³ + 25y Write the equation for the line tangent to the point (3,1). LV Q +arrow_forwardFind the equation of the tangent line at the given value of x on the curve. 2y3+xy-y= 250x4; x=1 y=arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Sequences and Series Introduction; Author: Mario's Math Tutoring;https://www.youtube.com/watch?v=m5Yn4BdpOV0;License: Standard YouTube License, CC-BY
Introduction to sequences; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=VG9ft4_dK24;License: Standard YouTube License, CC-BY