EBK NONLINEAR DYNAMICS AND CHAOS WITH S
EBK NONLINEAR DYNAMICS AND CHAOS WITH S
2nd Edition
ISBN: 9780429680151
Author: STROGATZ
Publisher: VST
Question
Book Icon
Chapter 10.7, Problem 6E
Interpretation Introduction

Interpretation:

Let f(x, r) = r – x2 , compare αf2(x/α, R1) to α2 f4(x/α2, R2)  and match the coefficients of the lowest powers of x. determine value of α.

Concept Introduction:

  • Obtain the expression for αf2(x/α, R1)  from the given function.

  • Obtain the expression for α2 f4(x/α2, R2)  from the given function.

  • Compare the lowest power and determine α

Expert Solution & Answer
Check Mark

Answer to Problem 6E

Solution:

By comparing αf2(x/α, R1) and α2 f4(x/α2, R2)  the coefficients of the lowest powers of x is matched and value of α = -1.66499 is determined.

Explanation of Solution

First we introduce some notation. Let f(x, r)  denote a unimodal map that undergoes a period-doubling route to chaos as r increases, and suppose that xm is the maximum. Let rn denote the value of r at which a 2n- cycle is born, and let Rn denote the value of r at which the 2n- cycle is superstable.

For the given equation,

f(x, r) = r – x2 

For the expression provided for map, R0 will be stable point. As R0 has a super stable fixed point, therefore from the definition of the super stable fixed point,

x&*#x00A0;= R0 –(x*)2 

The superstability condition is

λ =(ƒ x)x=x*=0

Differentiating the given equation

(ƒ x)=(R0 –(x)2) x=- 2x

Hence we must have fixed point x&*#x00A0;= 0.

Substituting x&*#x00A0;= 0 into the fixed point condition yields R0= 0 .

Hence R0= 0 .

At point R1 the map has a superstable 2- cycle. Let and q denote the points of the cycle.

The condition for super stability is depends on multiplier factor,

λ =(–2p)(–2q) = 0 

λ = 0 

So the point x = 0 must be one of the points in the 2- cycle.

Form the given function f(x, r) = r – x2 , by substituting x = 0 and r = R1. Then the period -2 condition to get the value of the R1

f2(0,R1) = 0 

f(f(0,R1)) = 0 

f((R1-(0)2),R1) = 0 

Hence solving further,

R1(R1-(0)2)2 = 0 

R1(R1)2 = 0 

R1(1R1) = 0 

R1= 0 and R1= 1 

R1= 0 is a fixed point and two cycle value is R1= 1 .

Similarly, for 3-cycle, we will apply period 3 condition to get value of the value of R2 

f4(0,R2) = 0 

f(f(f(f(0,R1)))) = 0 

f(f(f(R2-(0)2,R2))) = 0 

f(f(R2-(R2-(0)2)2, R2)) = 0 

f(R2(R2-(R2-(0)2)2)2, R2) = 0 

R2(R2(R2(R2-(0)2)2)2)2 = 0 

Hence solving further,

R2= 0 is fixed point.

R2= 1.3107 is 3- cycle point

R2= 1.94079

and remaining are complex roots. Now from the given system equation f(x, r) = r – x2 , By substituting r = R1

f(x, R1) = (R1)2 – x2 

By substituting R1=1

f(x, R1) = (1)2 – x2 

Considering the given explicit function, αf2(x/α, R1) 

αf2(x/α, R1) = αf(f(x/α, R1))

By substituting R1=1

αf2(x/α, 1) = αf(f(x/α, 1))

αf2(x/α, 1) = αf(1-(x/α)2,1)

αf2(x/α, 1) = α(1(1-(x/α)2)2)

Hence solving further,

αf2(x/α, 1) = α(1(1-(x/α)2)2)

αf2(xα, 1) = α(1-(1+x4α42 x2α2))

αf2(xα, 1) = α(1 - 1- x4α4+2 x2α2)

αf2(xα, 1) = α(2 x2α2x4α4)

αf2(xα, 1) = 2 x2αx4α3

Similarly the given function for R2, f(x, R2) = (R2)2 – x2 

By substituting R2= 1.3107

f(x, R2) = (1.3107)2 – x2 

f(x, R2) = 1.71793449 – x2 

f(x, R2) = 1.718 – x2 

Considering the given explicit function, α2 f4(x/α2, R2), By substituting R2= 1.718

α2 f4(x/α2, R2) = α2f(f(f(1.78 - (xα2)2,1.78))) 

α2 f4(x/α2, R2) = α2f(f(1.78(1.78 - (xα2)2)2,1.78)) 

α2 f4(x/α2, R2) = α2f(1.78-(1.78((1.78 - (xα2)2)2)2,1.78)) 

α2 f4(x/α2, R2) = α2(1.78(1.78-(1.78(1.78 - (xα2)2)2)2)2 )

Hence solving further,

α2 f4(x/α2, R2) = (1.67942α2x16α30+(13.744)x14α26(75.7707)x16α22+(213.124)x10α18(319.835)x8α14(239.281)x6α10+(66.2487)x4α6(3.32999)x2α2)

Hence the given explicit function, αf2(x/α, R1) to α2 f4(x/α2, R2)  is

αf2(xα, 1) = 2 x2αx4α3

α2 f4(xα2, R2) = (1.67942α2x16α30+(13.744)x14α26(75.7707)x16α22+(213.124)x10α18(319.835)x8α14(239.281)x6α10+(66.2487)x4α6(3.32999)x2α2)

To determine value of α

By comparing the lowest power of αf2(xα, 1) and α2 f4(xα2, R2) is the term x2,

2 x2α = -(3.32999)x2α2

2 = -3.32999α

α = -3.329992

α = -1.66499

Therefore the value of α from the given two function is determined as α = -1.66499.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Already got wrong chatgpt answer Plz don't use chatgpt answer will upvote
7. Suppose that X is a set, that I is a nonempty set, and that for each i Є I that Yi is a set. Suppose that I is a nonempty set. Prove the following:2 (a) If Y; CX for all i EI, then Uiel Yi C X. ¹See Table 4.8.1 in zyBooks. Recall: Nie X₁ = Vi Є I (x = X₁) and x = Uier X₁ = i Є I (x Є Xi). (b) If XCY; for all i Є I, then X Ciel Yi. (c) U(x)=xnUY. iЄI ΕΙ
8. For each of the following functions, determine whether or not it is (i) injective and/or (ii) surjective. Justify why or why not. (a) fiZZ defined by fi(n) = 2n. (b) f2 RR defined by f2(x) = x² − 4x+7. : (c) f3 Z {0, 1} defined by f3(n) = 0 if n is even and f3(n) = 1 if n is odd. (d) f4 Z N defined by f4(n) = 2n if n > 0 and f4(n) = -2n-1 if n < 0.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning